Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР А.В. Бурмистров

24 » 2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине

Б1.В.ОД.2 Информационные технологии

Специальность

18.05.01 «Химическая технология энергонасыщенных

(шифр)

(наименование)

материалов и изделий»

Специализации

Химическая технология органических соединений азота;

Химическая технология полимерных композиций, порохов и

твердых ракетных топлив;

Технология энергонасыщенных материалов и изделий;

Технология пиротехнических средств;

Автоматизированное производство химических предприятий

Квалификация (степень) выпускника	ИНЖЕНЕР
Форма обучения	RАНРО
Институт, факультет	ИХТИ, ФЭМИ, ФЭТИБ
Кафедра-разработчик рабочей программы	«Процессы и аппараты химической техноло-
	<u>ГИИ»</u>
Курс, семестр	2, 3

	Часы	Зачетные
		единицы
Лекции	18	0,5
Практические занятия	_	s—s
Семинарские занятия	_	n—x
Лабораторные занятия	27	0,75
Самостоятельная работа	63	1,75
Форма аттестации	Зачет, 3 семестр	9
Bcero	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования №1176 от 12.09.2016 (номер, дата утверждения) 18.05.01 - «Химическая технология энергонасыщенных материалов и по специальности изделий» «Химическая технология органических соединений азота»; для специализаций «Химическая технология полимерных композиций, порохов и твердых ракетных топлив»; «Технология энергонасыщенных материалов и изделий»; Технология пиротехнических средств; «Автоматизированное производство химических предприятий» на основании учебного плана для начала подготовки 2017, 2018 гг. Примерная программа по дисциплине отсутствует. Разработчики программы: доцент каф. ПАХТ Минибаева Л.Р. (должность) (О.И.Ф) Рабочая программа рассмотрена и одобрена на заседании кафедры ПАХТ, протокол от «31» августа 2018 г. № 11. Зав. кафедрой ПАХТ, профессор Клинов А.В. (.О.И.Ф) СОГЛАСОВАНО Протокол заседания методической комиссии Инженерного химико-технологического института от « /2» 19 2018 г. № Председатель комиссии, профессор Базотов В.Я. (O.N.Q) (подпись) **УТВЕРЖДЕНО** 2018 г. № /

Нач. УМЦ, доцент

Председатель комиссии, доцент

 $\frac{\Gamma \text{аврилов A.B.}}{(\Phi.\text{И.O.})}$

Китаева Л.А.

(Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины «Информационные технологии» являются:

- а) формирование знаний, умений и практических навыков для обоснованного выбора программной и аппаратной части персонального компьютера;
- б) приобретение практических навыков переработки информации при решении задач по профилю будущей специальности;
- в) обучение разным технологиям получения и реализации программ на языке высокого уровня;
- г) обучение способам применения основных видов информационных технологий, в том числе применения прикладного программного обеспечения специального назначения.

2. Место дисциплины (модуля) в структуре образовательной программы высшего образования

Дисциплина «Информационные технологии» относится к *вариативной* части ООП и формирует у инженеров по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Информационные технологии» инженер по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» должен освоить материал предшествующих дисциплин:

- а) Б1.Б.8 Высшая математика,
- б) Б1.Б.б Информатика,
- в) Б1.Б.7 **Ф**изика,
- г) Б1.Б.10 Общая и неорганическая химия.

Дисциплина «Информационные технологии» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Б1.Б.20 Процессы и аппараты химической технологии,
- б) Б1.Б.15 Вычислительная математика,
- в) Б1.В.ОД.6 Основы моделирования процессов.

Знания, полученные при изучении дисциплины «Информационные технологии» могут быть использованы при прохождении практик (производственной, преддипломной) и выполнении курсового проекта по курсу «Процессы и аппараты химических технологий», выпускных квалификационных работ по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий».

1. Компетенции обучающегося, формируемые в результате освоения дисциплины

ОПК-3 — Способностью решать задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности;

ПК-14 — Способностью к проведению патентных исследований с целью обеспечения патентной чистоты новых проектных решений;

ПК-17 — Способностью использовать информационные технологии при разработке проектов.

В результате освоения дисциплины обучающийся должен:

- 3нать: а) понятия: универсальное и специальное программное обеспечение, данные, информация, компьютерное моделирование, модель, оптимизация, информационные технологии;
 - б) классификацию информационных технологий и программного обеспечения, в том числе применяемых в специальном производстве;
 - в) методы, способы и средства получения, хранения, переработки информации.
- 2) Уметь: а) обоснованно выбирать прикладное программное обеспечение для решения поставленной задачи;
 - б) обрабатывать полученные результаты с использованием современных информационных технологий;
 - в) оценивать достоверность построенных моделей с использованием современных методов и средств анализа информации;
 - г) применять законы математики, физики и химии при решении профессиональных задач;
 - д) выполнять расчеты с использованием информационных технологий.
- 3) Владеть: а) прикладным программным обеспечением специального назначения;
 - б) методами составления программ на современных языках программирования;
 - в) методами моделирования и оптимизации.

4. Структура и содержание дисциплины «Информационные технологии»

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

№ п/п	Раздел дисциплины	Виды учебной ра- боты (в часах) ———————————————————————————————————					Оценочные средства для проведения промежуточной аттестации по разделам	
		Сем	Лекции	Семи- нар (Прак- тиче- ские занятия)	Лабо- ратор- ные работы	CPC	•	
1	Введение в информационные технологии	3	4	_	2	8	Собеседование при за- щите лабораторной работы	
2	Моделирование как метод по- строения математического описания	3	2	_	4	8	Собеседование при за- щите лабораторной работы	
3	Численные методы математи- ческого анализа	3	2	_	4	8	Собеседование при за- щите лабораторных работ	
4	Основы программирования	3	2	_	2	8	Собеседование при за- щите лабораторной работы	
5	Методы оптимизации	3	4	_	4	6	Собеседование при за- щите лабораторной работы	
6	Специализированные про- граммно-вычислительные ком- плексы для моделирования и оптимизации химико- технологических процессов	3	4	-	11	25	Собеседование при за- щите лабораторных работ	
_	Итого:		18	_	27	63		
Фори	ма аттестации						Зачет	

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

Использование изданных учебных пособий и электронных версий курса лекций, а также демонстрационного материала в виде слайдов для мультимедийного проектора позволяет существенно ускорить темп чтения лекций и изложить курс за 18 часов.

№ п/п	Раздел дисци- плины	Часы	Тема лекци- онного заня- тия	Краткое содержание	Фор- мируе- мые компе- тенции
1	Введение в информационные технологии	2	Введение в информацион- ные техноло- гии	Предмет, цели и задачи дисциплины. Понятие «информационные технологии». Эволюция информационных технологий. Свойства информационных технологий. Структура информационной технологии. Классификация информационных технологий.	ОПК-3 ПК-17
2		2	Программно- технические средства ин- формацион- ных техноло- гий	Компоненты программно-аппаратных ком- пьютерных средств. Программное обеспе- чение информационных технологий (обще- системное, инструментальное, прикладное). Технические средства информационных технологий.	ОПК-3 ПК-17
3	Моделирование как метод по- строения ма- тематического описания	2	Моделирова- ние как метод построения математиче- ского описа- ния	Понятия моделирования, модели. Виды моделей. Этапы и задачи моделирования. Этапы эмпирического метода построения математического описания. Формулирование цели, выбор факторов и переменных состояния объекта исследования, виды уравнений регрессии. Планирование и проведение экспериментов. Статическая обработка результатов и поиск наилучшей формы аппроксимации полученных данных. Достоинства и недостатки эмпирического метода.	ΟΠΚ-3 ΠΚ-14 ΠΚ-17
4	Численные ме- тоды матема- тического ана- лиза	2	Численные методы ре- шения уравне- ний	Методы решения нелинейных и линейных алгебраических уравнений. Решение дифференциальных уравнений (задача Коши и краевая задача).	ОПК-3 ПК-17
5	Основы про-граммирования	2	Основы про- граммирова- ния	Создание программ. Условный оператор if и операторы цикла. Подпрограммы функции. Решение алгебраических и дифференциальных уравнений в программе. Отладка программ.	ОПК-3 ПК-17
6	Методы опти- мизации	2	Аналитиче- ский метод оптимизации	Постановка и классификация задач оптимизации. Критерии оптимальности. Идентификация стационарных точек. Выпуклые множества. Вогнутые и выпуклые функции. Максимизация / минимизация функции при ограничении.	ОПК-3 ПК-14 ПК-17
7	Специализиро-	2	Численные методы оп- тимизации Основы мето-	Установление границ интервала. Методы равномерного поиска, деление интервала пополам, золотого сечения, квадратичной аппроксимации, Ньютона-Рафсона, средней точки, секущих, кубической аппроксимации. Сравнение методов. Оптимизация с использованием встроенных функций в Mathcad. Что такое вычислительная гидродинамика	ОПК-3 ПК-14 ПК-17

	ванные про- граммно- вычислительные комплексы для моделирования и оптимизации химико-		дов вычисли- тельной гид- родинамики	(CFD)? Исторический обзор. Исчерпывающее описание процессов переноса. Метод контрольного объема. Аппроксимация, сходимость, устойчивость решения, невязки. Порядок CFD моделирования. Построение геометрических моделей. Построение расчетных сеток. Основы решателя ANSYS	ПК-14 ПК-17
	технологических процессов			FLUENT. Физические модели в ANSYS FLUENT. Построцессинг.	
9		2	Моделирова- ние течений с одиночной вращающейся и множест- вами систем отсчета	Основные этапы моделирования с использованием комплексов вычислительной гидродинамики ANSYS FLUENT. Особенности моделирования течений и стратегия решения для одиночной вращающейся и множества систем отсчета. Особенности построения сетки для задач с множеством систем отсчета. Турбулентные течения. Выбор модели турбулентности. RANS, RSM и LES модели.	ОПК-3 ПК-14 ПК-17

6. Содержание практических/семинарских занятий

Учебным планом практические/семинарские занятия не предусмотрены.

7. Содержание лабораторных занятий

Цели лабораторного практикума заключаются в следующем:

- 1. Закрепление и углубление знаний, полученных на лекциях.
- 2. Освоение методов обработки опытных данных.
- 3. Овладение навыками работы в программных продуктах, позволяющих решать задачи по профилю будущей специальности.

№ п/п	Раздел дис- циплины	Часы	Наименование лабораторной работы	Краткое содержание	Фор- мируе- мые ком- петен- ции
1	Введение в информационные технологии	2	Основы математического пакета Mathcad	Знакомство с пользовательским ин- терфейсом математического пакета Mathcad. Изучение способов задания различного типа переменных и функций. Освоение приемов работы с графиче- ским и текстовым редакторами.	ОПК-3 ПК-17
2	Моделирование как метод по- строения ма- тематическо- го описания	4	Регрессионный ана- лиз, методы ап- проксимации	Знакомство с возможностями мате- матического пакета Mathcad при реше- нии задач регрессионного анализа. Ли- нейная, полиномиальная, нелинейная, обобщенная линейная и обобщенная не-	ОПК-3 ПК-14 ПК-17

				линейная регрессии.	
3	Численные методы ма- тематическо- го анализа	4	Численное решение алгебраических и дифференциальных уравнений	Знакомство с процедурами численного решения алгебраических уравнений и систем уравнений, реализованных в математическом пакете Mathcad. Знакомство с возможностями математического пакета Mathcad при решении дифференциальных уравнений в различных вариантах постановки задачи (задача Коши, краевая задача). Символьные вычисления.	ОПК-3 ПК-17
4	Основы про-граммирования	2	Основы программи- рования	Создание программ: ввод строк в программу, локальное присвоение значений. Условный оператор if и операторы цикла (while, for, break, continue, return). Вывод результатов расчета из программы. Подпрограммы функции. Интегрирование функции методом трапеций. Решение алгебраических и дифференциальных уравнений в программе. Нахождение экстремума функции в программе. Отладка программ.	ОПК-3 ПК-17
5	Методы оп- тимизации	4	Оптимизация в ма- тематическом па- кете Mathcad	Исследование функций. Нахождение стационарных точек. Нахождение минимума функции методом равномерного поиска, деления интервала пополам, золотого сечения. Минимизация функций с использованием методов Пауэлла, Ньютона-Рафсона, средней точки, секущих, кубической аппроксимации. Использование встроенных функций тіпітіге, тахітіге, ортіп, тіпет.	ОПК-3 ПК-14 ПК-17
6	Специализированные программновычислительные комплексы для моделирования и оптимизации химикотехнологических процессов	4	Основы программ- но- вычислительного комплекса Ansys для решения задач гид- родинамики в аппа- ратах различной конструкции	Графический интерфейс ANSYS WORK-BENCH. Работа с проектом в ANSYS WORKBENCH. Графический интерфейс ANSYS Design Modeler. Создание эскиза геометрии модели: инструменты рисования, инструменты редактирования эскиза, задание ограничений и связей между объектами, задание размерных параметров эскиза. Общие настройки генератора сеток. Порядок разбиения. Работа с меню Mesh Control. Контроль формы элементов. Методы построения сеток в Meshing. Этапы работы в ANSYS FLUENT. Запуск программы. Интерфейс программы. Настройка модели: подготовка расчетной модели, панели задач General и Models, работа с материалами, задание граничных условий (ГУ) и условий для сплошных сред. Настройки решате-	ОПК-3 ПК-14 ПК-17

				iid. Momodri nomonnia mundozonno nomo	
				ля: методы решения, управление решением, контроль решения, инициализация	
				1	
				решения, дополнительные возможности	
				решателя, запуск решения. Проверка	
				полученного решения, балансовых соот-	
				ношений. Постпроцессинг: создание ли-	
				ний, плоскостей, изоповерхностей для	
				визуализации решения, построение гра-	
				фиков, создание анимации, визуализация	
				векторных и скалярных полей различных	
				величин, отчеты. Адаптация сетки.	
7		5	Моделирование	Построение расчетной области цилин-	ОПК-3
			турбулентных те-	дрической трубы с различными мест-	ПК-14
			чений в цилиндриче-	ными сопротивлениями (на примере	ПК-17
			ских трубах с раз-	диффузор-конфузора, поворотов, суже-	
			личными местными	ний, расширений) в ANSYS Design	
			сопротивлениями	Modeler. Создание сетки и задание ти-	
			-	пов ГУ и сплошных сред в ANSYS	
				Meshing. Настройка решателя ANSYS	
				FLUENT: выбор решателя, выбор моде-	
				лей турбулентности, создание мате-	
				риалов, задание ГУ, настройки метода	
				решения, настройка визуализации про-	
				цесса решения, запуск на расчет, про-	
				верка балансов. Постпроцессинг: по-	
				строение изоповерхностей, визуализа-	
				ция результатов расчета в виде век-	
				торных и скалярных полей. Сравнение	
				результатов расчета при использовании	
				различных моделей турбулентности,	
				1 2 2 2	
				подбор адекватной модели турбулент-	
				ности для расчета турбулентных те-	
				чений в цилиндрических трубах с раз-	
0		2	M-)	личными местными сопротивлениями.	
8		2	Моделирование	Настройка решателя ANSYS FLUENT:	ОПК-3
			гидродинамики в	выбор решателя, выбор моделей турбу-	ПК-14
			аппаратах с быст-	лентности, создание материалов, зада-	ПК-17
			роходными переме-	ние ГУ и условия для сплошной среды (с	
			шивающими уст-	учетом метода множества систем от-	
			ройствами и от-	счета), настройки метода решения, на-	
			ражательными пе-	стройка визуализации процесса реше-	
			регородками	ния, запуск на расчет, проверка балан-	
				сов. Постпроцессинг: построение изо-	
				поверхностей, визуализация результа-	
				тов расчета в виде векторных и ска-	
				лярных полей. Сравнение результатов	
				расчета при использовании различных	
				моделей турбулентности, подбор адек-	
				ватной модели турбулентности для	
				расчета турбулентных течений в аппа-	
				ратах с быстроходной мешалкой и от-	
				ражательными перегородками.	
L	I .			r	

Лабораторные работы проводятся в помещении учебных лабораторий кафедры ПАХТ на компьютерах с использованием специализированных программных продуктов, имеющихся в ФГБОУ ВО «КНИТУ».

8. Самостоятельная работа инженера

№ п/п	Темы, выносимые на самостоя- тельную работу	Часы	Форма СРС	Формируе- мые компе- тенции
1	Основы математического пакета Mathcad	8	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-17
2	Регрессионный анализ, методы an- проксимации	8	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-14 ПК-17
3	Численное решение алгебраических и дифференциальных уравнений	8	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-17
4	Основы программирования	8	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-17
5	Оптимизация в математическом па- кете Mathcad	6	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-14 ПК-17
6	Основы программно-вычислительного комплекса Ansys для решения задач гидродинамики в аппаратах различной конструкции	12	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-14 ПК-17
7	Моделирование турбулентных течений в цилиндрических трубах с различными местными сопротивлениями	6	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-14 ПК-17
8	Моделирование гидродинамики в ап- паратах с быстроходными перемеши- вающими устройствами и отража- тельными перегородками	7	Подготовка к выполнению лабора- торной работы и сдаче отчета по ней.	ОПК-3 ПК-14 ПК-17

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Информационные технологии» используется рейтинговая система, соответствующая «Положению о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса». Рейтинговая оценка формируется на основании текущего и промежуточного контроля.

При изучении дисциплины «Информационные технологии» предусматривается выполнение восьми лабораторных работ, при защите отчета по которым студент может получить следующее минимальное и максимальное количество баллов:

Оценочные средства	Количество	Min, баллов	Мах, баллов
Лабораторная работа	8	60	100
Итого:		60	100

10. Информационно-методическое обеспечение дисциплины

10.1 Основная литература

При изучении дисциплины «Информационные технологии» в качестве основных источников информации рекомендуется использовать следующую литературу:

№	Основные источники информации	Кол-во экз.
п/п		
1	Синаторов, С.В. Информационные техно-	ЭБС «Консультант студента»
	логии / С.В. Синаторов - М. : ФЛИНТА,	http://www.studentlibrary.ru/book/ISBN9785
	2016 448 c.	976517172.html
		Доступ из любой точки Интернета после
		регистрации с ІР-адресов КНИТУ
2	Клинов, А.В. Математическое моделирова-	ЭБС «Лань»
	ние химико-технологических процессов:	http://e.lanbook.com/books/element.php?pl1
	учебное пособие / А.В. Клинов, А.Г. Муха-	<u>id=13289</u>
	метзянова. – Казань: Изд-во КГТУ, 2009. –	Доступ из любой точки Интернета после
	144 c.	регистрации с ІР-адресов КНИТУ
3	Федорова, Н.Н. Основы работы в ANSYS 17	ЭБС «Лань»
	/ Н.Н. Федорова, С.А. Вальгер, М.Н. Дани-	https://e.lanbook.com/book/90112
	лов, Ю.В. Захарова. – Москва: ДМК Пресс,	Доступ из любой точки Интернета после
	2017 210 c.	регистрации с ІР-адресов КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

N₂	Дополнительные источники	Кол-во экз.
п/п	информации	
1	Клинов, А.В. Лабораторный	ЭБС «Лань»
	практикум по математиче-	http://e.lanbook.com/books/element.php?pl1_id=13285
	скому моделированию химико-	Доступ из любой точки Интернета после регистрации с
	технологических процессов:	ІР-адресов КНИТУ
	учебное пособие / А.В. Клинов,	
	А.В. Малыгин. – Казань: Изд-	
	во КГТУ, 2011. – 100 с.	

2	Гумеров, А.М. Пакет	70 экз. в УНИЦ КНИТУ		
	Тумеров, А.М. Пакет MathCad: теория и практика:	Электронная библиотека УНИЦ КНИТУ		
	учеб. пособие. Ч.1: Интегри-			
	рованная математическая	http://ft.kstu.ru/ft/gumerov-MathCad-1.pdf		
	система MathCad / A.M. Гу-	Доступ с ІР адресов КНИТУ		
	меров, В.А. Холоднов. – Казань			
	: Изд-во КНИТУ, 2013. – 110 c.			
3	Коноплева, И.А. Информаци-	ЭБС «Консультант студента»		
	онные технологии: учеб. посо-	http://www.studentlibrary.ru/book/ISBN9785392123858.html		
	бие / И.А. Коноплева, О.А.	Доступ из любой точки Интернета после регистрации с		
	Хохлова, А.В. Денисов 2-е	ІР-адресов КНИТУ		
	изд., перераб. и доп М. :			
	Проспект, 2014 328 с.			
4	Дьяконов, В.П.Новые инфор-	ЭБС «Консультант студента»		
	мационные технологии / В. П.	http://www.studentlibrary.ru/book/ISBN5980031707.html		
	Дьяконов - М.: СОЛОН-	Доступ из любой точки Интернета после регистрации с		
	ПРЕСС, 2008640 с.	ІР-адресов КНИТУ		
5	Гумеров, А.М. Пакет	70 экз. в УНИЦ КНИТУ		
	MathCad: теория и практика: учеб. пособие. Ч.2: MathCad в	Электронная библиотека УНИЦ КНИТУ		
	исследовании математиче-	http://ft.kstu.ru/ft/gumerov-MathCad-2.pdf		
	ских моделей химико-	Доступ с ІР адресов КНИТУ		
	технологических процессов /			
	А.М. Гумеров, В.А. Холоднов. –			
	Казань : Изд-во КНИТУ, 2013.			
	- 84 c.			
6	Холоднов, В.А. Математиче-	48 экз. в УНИЦ КНИТУ		
	ское моделирование и оптими-	'		
	зация химико-технологических			
	процессов : практ. руково-			
	дство / В.А. Холоднов [и др.] .			
	– СПб. : Профессионал, 2003 .			
	− 478 c.			
7	Минибаева, Л.Р. Расчет аппа-	5 экз. в УНИЦ КНИТУ		
	ратов с перемешивающими	40 экз. на кафедре		
	устройствами методами вы-	Электронная библиотека УНИЦ КНИТУ		
	числительной гидродинамики:	http://ft.kstu.ru/ft/Minibaeva-raschet_apparatov.pdf		
	монография / Л.Р. Минибаева,	Доступ с ІР адресов КНИТУ		
	А.Г. Мухаметзянова, А.В.	ЭБС «Консультант студента»		
	Клинов; Казан. нац. исслед.	http://www.studentlibrary.ru/book/ISBN9785788216270.html		
	технол. ун-т. – Казань: Изд-во	Доступ из любой точки Интернета после регистрации с		
0	КНИТУ, 2014. — 110 с.	ІР-адресов КНИТУ		
8	Басов, К.А. ANSYS: справочник	ЭБС «Лань»		
	пользователя / К.А. Басов. –	https://e.lanbook.com/book/1335		
	Москва: ДМК Пресс, 2008. — 640 с.	Доступ из любой точки Интернета после регистрации с IP-адресов КНИТУ		
	U7U C.	11 -uopecos Kiivii y		

10.3 Электронные источники информации

При изучении дисциплины «Информационные технологии» рекомендуется использование электронных источников информации:

- 1. Учебный портал ПАХТ КНИТУ http://chemen.ru
- 2. Клуб пользователей ANSYS http://cae-club.ru/videos
- 3. Видеоуроки CADFEM http://www.cadfem-cis.ru/service/video/all/
- 4. Портал пользователей ANSYS https://support.ansys.com/portal/site/AnsysCustomerPortal
- 5. Электронный каталог УНИЦ КНИТУ http://ruslan.kstu.ru/
- 6. ЭБС «Библиотех» https://knitu.bibliotech.ru/
- 7. ЭБС «ІОРАЙТ» http://www.biblio-online.ru/
- 8. ЭБС «Руконт» http://rucont.ru/
- 9. ЭБС «Лань» http://e.lanbook.com/
- 10. ЭБС «КнигаФонд» http://www.knigafund.ru/
- 11. ЭБС «Консультант студента» http://www.studentlibrary.ru

Согласовано:

Зав.сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ ПРЕЖДЕНИЕ ВЫСШЕГО ВБРАЗОВАНИЯ

«КАЗАНСИВЯ ПАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИИССЯЙ УНИВЕРСИТЕТЬ У ЧЕСТО НА УЧНЫЙ ИНФОРМИЦИОННЫЙ ЦЕНТР

Усольцева И. И.

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Перечень компетенций с указапием уровней их формирования в процессе освоения дисциплины, описание показателей и критериев оценивания компетенций, описание шкал оценивания, материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, методические материалы, определяющие процедуры оценивания знаний, умений, навыков приведены в Фонде оценочных средств по дисциплине «Информационные технологии», который является составной частью рабочей программы.

12. Материально-техническое обеспечение дисциплины (модуля)

Лекционные занятия:

- а) комплект электронных презентаций/слайдов,
- б) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук),

Лабораторные работы:

а) компьютерный класс с персональными компьютерами, на которых установлено необходимое программное обеспечение.

Прочее:

- а) рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- б) рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Весь лекционный курс обеспечен учебными пособиями, раздаточным материалом и комплектом слайдов, что позволяет вести активный диалог со студентами. Кроме того, курс лекций снабжен видеоматериалами с обучающими роликами работе в специализированных программно-вычислительных комплексах для моделирования химикотехнологических процессов. Перед выполнением лабораторных работ проводится дискуссия по обсуждению методов решения поставленных задач, где роль преподавателя заключается в корректировке или уточнении методов, предлагаемых студентами. Занятия, проводимые в интерактивных формах, при изучении дисциплины «Информационные технологии» составляют более 11 часов аудиторных занятий, требуемых учебным планом.

Лабораторный практикум изложен в учебном пособии, а также на сайте http://chemen.ru, кроме того, студенты получают ссылки на видеоуроки по работе в специализированных программно-вычислительных комплексах, что позволяет студентам самостоятельно готовиться к работам, проводить обработку результатов и оформление отчетов.

В случае возникновения вопросов при подготовке к выполнению лабораторных работ и сдаче отчета по ней внеаудиторных часов студент может обратиться к преподавателю удаленно по электронной почте.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине «Информационные технологии»

(наименование дисциплины)

По направлению <u>18.05.01</u> «<u>Химическая технология энергонасыщенных</u> материалов и изделий»

(шифр)

(название)

для профилей: Химическая технология органических соединений азота; Химическая технология полимерных композиций, порохов и твердых ракетных топлив; Технология энергонасыщенных материалов и изделий; Технология пиротехнических средств; Автоматизированное производство химических предприятий.

для набора обучающихся 2019 г.

Форма обучения очная

пересмотрена на заседании кафедры ПАХТ

(наименование кафедры)

Дата переутверждения РП	Наличие измене- ний	Наличие изменений в списке литературы	Подпись разработчика РП доц. Анашкин И.П.	Подпись заведующего кафедрой ПАХТ проф. Клинов А.В.	Подпись начальника УМЦ доц. Китаева Л.А.
Протокол заседания кафедры №7 от 03.07.2019	Есть*	Нет	\$	AS	Muy

- * Пункт Профессиональные базы данных и информационные справочные системы
- 1. Стандартная справочная база данных NIST https://webbook.nist.gov/chemistry/.
- 2. База данных CoolProp http://www.coolprop.org/v4/index.html.

Дополнение в пункт 12: Лицензированное и свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «Информационные технологии»:

- 1. MS Office
- 2. Mathcad Education-University Edition
- 3. Аскон Компас 3Dv14