Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор по УР
Бурмистров А.В.
« 1. » 2019 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине	«Дополнительные главы математики»
Направления подготовки	13.03.02 «Электроэнергетика и электротехника»
Профиль подготовки	«Электропривод и автоматика»
Квалификация выпускника	БАКАЛАВР
Форма обучения	<u> </u>
Институт, факультет	ИУАИТ
Кафедра-разработчик рабо	чей программы высшей математики
Курс, семестр	2 курс, 3 семестр

	Часы	Payaryu ta ayuuyuu t
	3 семестр	Зачетные единицы
Лекции	36	1
Практические занятия	36	1
Семинарские занятия		
Лабораторные занятия		
Самостоятельная работа	99	2,75
Форма аттестации	Экзамен, 45	1,25
Всего	216	6

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 144 от 28.02.2018)
по направлению 13.03.02 «Электроэнергетика и электротехника»

для профиля: «Электропривод и автоматика» на основании учебного плана набора обучающихся 2019 года.

Разработчик программы:	11/		
Доцент	1 Hill	Михеев А.В.	
(должность)	(подпись)	(Ф.И.О)	
Рабочая программа рассмотр протокол от		нии кафедры <u>высшей матем</u>	атики,
Зав. кафедрой, проф	(подпись)	Жихарев В.А. (Ф.И.О)	
СОГЛАСОВАН	o		
Протокол заседания методи разовательной программы о		ы ЭЭ, реализующей подготовк; г. № <u>6</u>	у основной об-
Зав. кафедрой ЭЭ, профессор	о <u>Манеров</u> (подпис		<u>ов В.Г.</u> О.)
УТВЕРЖДЕНО	\mathcal{A}	2	
Начальник УМЦ, доцент		Китаева Л.А.	

1. Цели освоения дисциплины

Целями освоения дисциплины «Дополнительные главы математики» являются:

- а) овладение системой математических знаний, приобретение запаса конкретных сведений и овладение определенными умениями и навыками,
- б) усвоение понятий, необходимых для взаимосвязи с понятиями других наук, формирование определенных систем взглядов на окружающий мир, умение решать задачи с прикладной направленностью,
- в) развитие таких важных качеств личности как аккуратность, потребность к дальнейшему самообразованию, к творческому поиску,
- г) развитие способностей, необходимых для использования метода математического моделирования.

2. Место дисциплины (модуля) в структуре основной образовательной программы

Дисциплина «Дополнительные главы математики» относится к *обязательной* части ООП и формирует у бакалавров по направлению 13.03.02 «Электроэнергетика и электротехника» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Дополнительные главы математики» бакалавр по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» должен освоить материал предшествующих дисциплин:

- а) Предмет «Математика» в школе;
- б) дисциплина «Высшая математика».

Дисциплина «Дополнительные главы математики» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) «Моделирование в технике»;
- б) «Основы автоматического управления».

Знания, полученные при изучении дисциплины «Дополнительные главы математики» будут использоваться при прохождении практик и выполнении выпускных квалификационных работ по направлению подготовки 13.03.02 «Электроэнергетика и электротехника».

3. Компетенции и индикаторы достижения компетенции обучающегося,

формируемые в результате освоения дисциплины

Компетенции:

ОПК-2. Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач.

Индикаторы достижения компетенции:

- ОПК-2.1. Знает физико-математический аппарат, методы анализа и моделирования.
- ОПК-2.2. Умеет применять математический аппарат аналитической геометрии, линейной алгебры, дифференциального и интегрального исчисления, функции одной и нескольких переменных, теории функций комплексного переменного, математической статистики и численных методов, физические законы механики, молекулярной физики, химии, термодинамики, электричества и магнетизма для решения типовых профессиональных задач.
- ОПК-2.3. Владеет методами анализа и моделирования, теоретического и экспериментального исследования для решения профессиональных задач.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) основные понятия и методы теории поля, уравнений математической физики, теории функций комплексной переменной, операционного исчисления, теории вероятностей, математической статистики;
- б) логику высказываний и предикатов, элементы теории сложности, основные положения теории графов, введение в теорию алгоритмов и алгоритмических языков;
 - в) математические методы решения профессиональных задач.

2) Уметь:

- а) применять методы теории поля, теории функций комплексной переменной и операционного исчисления для решения инженерных задач;
 - б) решать уравнения математической физики применительно к реальным процессам;
- в) применять методы теории вероятностей, математической статистики, математической логики, теории графов и теории алгоритмов при решении типовых профессиональных задач.

3) Владеть:

а) методами построения математической модели типовых профессиональных задач и содержательной интерпретации полученных результатов.

4. Структура и содержание дисциплины «Дополнительные главы математики». Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

№	_	стр	еместра		Виды учебной работы (в часах			Оценочные средства
п/п	Раздел дисциплины	Семестр	Неделя семестра	Лекция	Практические за- нятия	Лаб. раб.	СРС	жуточной аттестации по разделам
1	Теория поля		1-3	6	6		6	Контрольная работа
2	Уравнения математической фи- зики		4-5	4	4		6	Контрольная работа
3	Теория вероятностей и математическая статистика	2	6-9	8	8		24	Контрольная работа, расчетное задание
4	Теория функций комплексной переменной	3	10-12	6	6		20	Контрольная работа, расчетное задание
5	Операционное исчисление		13-15	6	6		20	Контрольная работа, расчетное задание
6	Дискретная математика		16-18	6	6		23	Контрольная работа
	Итого во 3-м семестре	216	18	36	36		99	Экзамен, 45 ч.

5. Содержание лекционных занятий по темам с указанием формируемых компетенций.

№	Раздел дисци- плины	Часы	Тема лекци- онного заня- тия	Краткое содержание	Индикаторы достижения компетенции
1	Теория поля	6	Скалярное поле и его характеристики.	1. Скалярное поле и его характеристики (2 час.) 1.1. Определение скалярного поля. Линии и поверхности уровня. 1.2. Производная по направлению.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			Определение векторного поля. Дивергенция и ротор векторного поля	 Градиент скалярного поля. Векторное поле и его характеристики (4 час.) Определение векторного поля. Векторные линии. Поток и дивергенция векторного 	
			Поток и цирку- ляция вектор- ного поля.	поля. 2.3. Циркуляция и ротор векторного поля. 2.4. Формулы Остроградского и Стокса.	
2	Уравнения мате- матической фи- зики	4	Основные уравнения математической физики. Граничные и начальные условия. Метод Даламбера.	3. Понятия об уравнениях математической физики (1 час.) 3.1. Основные уравнения математической физики. Граничные и начальные условия. 3.2. Классификация линейных дифференциальных уравнений с частными производными П порядка.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			Метод Фурье. Его применение для решения смешанной задачи для уравнения колебаний струны, уравнения теплопроводности, задачи Дирихле в круге.	4. Методы решения уравнений математической физики (3 час.) 4.1. Метод Даламбера. 4.2. Метод Фурье. Его применение для решения смешанной задачи для уравнения колебаний струны, уравнения теплопроводности, задачи Дирихле в круге.	
3	Теория вероятно- стей и математи- ческая стати- стика	8	Основные понятия теории вероятностей. Различные определения вероятности. Правила сложения и умножения вероятностей.	5. Основные понятия теории вероятностей (3 час.) 5.1. Основные формулы комбинаторики. 5.2. Случайные события и действия с ними. 5.3. Различные определения вероятности. 5.4. Правила сложения и умножения вероятностей.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			Формула полной вероятности. Схема Бернулли. Дискретные случайные величины и их характеристики.	5.5. Схема Бернулли.6. Случайные величины (3 час.)6.1. Дискретные и непрерывные случайные величины. Закон распределения.6.2. Числовые характеристики случайных величин.	

			Непрерывные случайные величины и их характеристики.	6.3. Примеры распределений. 6.4. Многомерные случайные величины. Понятие о случайных процессах.	
			Элементы математической статистики.	7. Элементы математической статистики (2 час.) 7.1. Генеральная совокупность, выборка. Основные понятия математической статистики. 7.2. Определение неизвестных параметров распределения. 7.3. Построение эмпирического закона распределения. 7.4. Проверка статистических гипо-	
4	Теория функций комплексной переменной	6	Понятие функции комплексной переменной. Производная ФКП.	тез. 8. Функции комплексной переменной (1 час.) 8.1. Области и их границы на комплексной плоскости. 8.2. Понятие ФКП. 8.3. Основные элементарные ФКП. 8.4. Предел и непрерывность ФКП.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			Интегрирование ФКП. Ряды Тейлора и	9. Регулярные ФКП (1 час.) 9.1. Производная ФКП. 9.2. Условия Коши-Римана. Регулярные ФКП. 9.3. Геометрический смысл произ-	
			Гяды Тейлора и Лорана. Особые точки ФКП.	водной ФКП. 10. Интегрирование ФКП (2 час.) 10.1. Интеграл от ФКП. 10.2. Основная теорема Коши. 10.3. Интегральная формула Коши.	
				11. Ряды Тейлора и Лорана. Особые точки (2 час.) 11.1. Ряд Тейлора. 11.2. Ряд Лорана. 11.3. Изолированные особые точки. 11.4. Вычеты. Основная теорема о вычетах. Применение вычетов к вы-	
5	Операционное исчисление	6	Преобразование Лапласа. Оригинал и изображение. Свойства преобразования Лапласа. Дифференцирование и интегрирование оригиналов и изобра-	числению интегралов. 12. Основные понятия операционного исчисления (4 час.) 12.1. Преобразование Лапласа. Оригинал и изображение. 12.2. Свойства преобразования Лапласа. 12.3. Дифференцирование оригиналов и изображений. 12.4. Интегрирование оригиналов и изображений.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			жений. Решение ЛДУ и их систем средствами операционного исчисления.	13. Приложения операционного исчисления (2 час.) 13.1. Решение линейных дифференциальных уравнений. 13.2. Решение систем ЛДУ с постоянными коэффициентами.	

6	Дискретная мате- матика	6	Логические исчисления. Логича высказываний. Равносильные формулы логики высказываний.	14. Функции алгебры логики (4 час.) 14.1. Логические исчисления. Логика высказываний. 14.2. Булева алгебра. Равносильные формулы логики высказываний. 14.3. Элементы логики предикатов. 14.4. Понятие о формальных системах, языках и грамматиках.	ОПК-2.1, ОПК-2.2, ОПК-2.3
			Элементы логики предикатов. Понятие о формальных системах, языках и грамматиках.	15. Графы (2 час.) 15.1. Основные определения и способы задания графов. 15.2. Эйлеровы и Гамильтоновы графы. 15.3. Маршруты цепи, циклы. 15.4. Деревья. 15.5. Потоки в сетях.	

6. Содержание практических занятий

Цель проведения практических занятий — освоение лекционного материала и выработка определенных умений, связанных с усвоением студентами современных знаний о математических методах, их применение к математическому моделированию, овладение компетенциями.

Общая продолжительность практических занятий и их распределение по отдельным темам согласно тематике лекционного курса представлены в таблице.

3 семестр

№ п/п	Раздел дисциплины	Часы	Тема практического занятия	Индикаторы достижения ком- петенции
		2	ПЗ. 1. 1.1-1.3	ОПК-2.1, ОПК-2.2, ОПК-2.3
1	Теория поля	2	ПЗ. 2. 2.1-2.4	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 3. К.р.№1	ОПК-2.1, ОПК-2.2, ОПК-2.3
2	Уравнения математической фи-	2	ПЗ. 4. 3.1-3.2 , 4.1-4.2	ОПК-2.1, ОПК-2.2, ОПК-2.3
2	зики	2	ПЗ. 5. К.р.№2	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 6. 5.1-5.5	ОПК-2.1, ОПК-2.2, ОПК-2.3
3	Теория вероятностей и матема- тическая статистика	4	ПЗ. 7-8. 6.1-6.4, 7.1-7.4	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 9. К.р.№3	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 10. 8.1-8.4, 9.1-9.3	ОПК-2.1, ОПК-2.2, ОПК-2.3
4	Теория функций комплексной переменной	2	ПЗ. 11. 10.1-10.3, 11.1-11.4	ОПК-2.1, ОПК-2.2, ОПК-2.3
			ПЗ. 12. К.р.№4	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 13. 12.1-12.4	ОПК-2.1, ОПК-2.2, ОПК-2.3
5	Операционное исчисление	2	ПЗ. 14. 13.1-13.2	ОПК-2.1, ОПК-2.2, ОПК-2.3
		2	ПЗ. 15. К.р.№5	ОПК-2.1, ОПК-2.2, ОПК-2.3

6	Дискретная математика	4	ПЗ. 16-17. 14.1-14.3, 15.1-15.5	ОПК-2.1, ОПК-2.2, ОПК-2.3
	дискретная математика	2	ПЗ. 18. К.р.№6	ОПК-2.1, ОПК-2.2, ОПК-2.3
	ИТОГО	36		

7. Содержание лабораторных занятий (если предусмотрено учебным планом) Лабораторные занятия учебным планом не предусмотрены.

8. Самостоятельная работа

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС*	Индикаторы достижения компетенции
1	Теория поля	6	Домашнее задание	ОПК-2.1, ОПК-2.2, ОПК-2.3
2	Уравнения математической физики	6	Домашнее задание	ОПК-2.1, ОПК-2.2, ОПК-2.3
3	Теория вероятностей и математическая статистика	24	Расчётное задание №1	ОПК-2.1, ОПК-2.2, ОПК-2.3
4	Теория функций комплексной переменной	20	Расчётное задание №2	ОПК-2.1, ОПК-2.2, ОПК-2.3
5	Операционное исчисление	20	Расчётное заданиее №3	ОПК-2.1, ОПК-2.2, ОПК-2.3
6	Дискретная математика	23	Домашнее задание	ОПК-2.1, ОПК-2.2, ОПК-2.3

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов используется балльно-рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Полный (суммарный) рейтинг студента при изучении дисциплины «Дополнительные главы математики» складывается из баллов, полученных при выполнении следующих видов учебных работ:

3 семестр

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Расчетные задания	3	6	15
Контрольные работы	6	30	45
Экзамен	1	24	40
Итого		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины

11.1 Основная литература

При изучении дисциплины «Дополнительные главы математики» в качестве основных источников информации рекомен-

дуется использовать следующую литературу

№	Основные источники информации	Количество экземпляров
1	Ю.М. Данилов Математика [Учебники]: учеб. пособие для студ. вузов, обуч. техн. спец./ Ю.М. Данилов [и др.]; Казан. гос. технол. ун-т; под ред. Л.Н. Журбенко. — М.: ИНФРА-М, 2006. — 495 с.	1246 экз. УНИЦ КНИТУ
2	Ю.М. Данилов Математика [Учебники]: – М.: ИНФРА- М, 2019. – 495 с.	ЭБС «Znanium» http://znanium.com/go.php?id=989799 доступ из любой точки интернета после регистрации с ip- адресов КНИТУ
3	В.С. Шипачев Задачник по высшей математике: Учебное пособие для студ. вузов / В.С. Шипачев .— 3-е изд., стереотип. — М.: Высш. шк., 2003 .— 304 с	3079 экз. КНИТУ
4	В.С. Шипачев Задачник по высшей математике: Учебное пособие 10, стереотип. – Москва: ООО «Научно-издательский центр ИНФРА-М», 2019.—304 с.	ЭБС «Znanium» http://znanium.com/go.php?id=986760 доступ из любой точки интернета после регистрации с ip- адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется использовать следующие литературу

No	Дополнительные источники информации	Количество экземпляров
1	Журбенко Л.Н., Математика в примерах и задачах [Учебники]: учеб. пособ. для студ. вузов, обуч. по техн. спец. / Л.Н. Журбенко [и др.]. – М: ИНФРА-М, 2009. – 373 с	1330 экз УНИЦ КНИТУ
2	Журбенко Л.Н., Математика в примерах и задачах [Учебники]: учеб. пособ. для студ. вузов, обуч. по техн. спец. / Л.Н. Журбенко [и др.]. — М: ИНФРА-М, 2016. — 372 с.	ЭБС «Znanium» http://znanium.com/go.php?id=557001 доступ из любой точки интернета после регистрации с ip- адресов КНИТУ
3	Р.Ш. Хуснутдинов, Математика для экономистов в примерах и задачах [Учебники]: учеб. пособ./ Р.Ш. Хуснутдинов, В.А. Жихарев. – СПб.; М; Краснодар: Лань, 2012. – 654 с.	286 экз. УНИЦ КНИТУ Электронная библиотека УНИЦ КНИТУ http://ft.kstu.ru/ft/Jiharev_Husnutdinov matematika.pdf доступ с ip- адресов КНИТУ
4	Зарипов, Р.Н. Специальные разделы математики: теория функций комплексной переменной: основы операцион. исчисления: учеб. пособие / Р.Н. Зарипов, Г.П. Чугунова; Казан. гос. технол. ун-т. — Казань, 2008. — 116 с.	105 экз. УНИЦ КНИТУ
5	Журбенко, Л.Н. Практикум по дополнительным главам математики: учеб. пособие / Казан. гос. технол. ун-т; под ред. Л.Н. Журбенко, Г.А. Никоновой. — Казань, 2007. — 129 с.	148 экз. УНИЦ КНИТУ

11.3 Электронные источники информации

При изучении дисциплины «Дополнительные главы математики» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ режим доступа http://ruslan.kstu.ru
- 2. ЭБС «Юрайт» режим доступа http://www.biblio-online.ru
- 3. ЭБС «Znanium» режим доступа http://znanium.com

Согласовано:

Зав.сектором ОКУФ

федеральное госудерственное бюджетное образовательное учруждение высшего образоватия «казанский карология выби исследовательский укиология выби исследовательский укиология выби исследовательский учиверситет» учественной чиный ч

11.4 Современные профессиональные базы данных и информационные справочные системы

- 1. zbMATH самая полная математическая база данных, охватывающая материалы с конца 19 века. zbMath содержит около 4 000 000 документов, из более 3 000 журналов и 170 000 книг по математике, статистике, информатике, а также машиностроению, физике, естественным наукам и др. Доступ свободный: https://zbmath.org/
- 2. Библиотека Math.ru книги и видеолекции по математике, занимательные математические факты, различные по уровню и тематике математические задачи, отдельные истории из жизни учёных, материалы для практических занятий, официальные документы и др. Доступ свободный: https://math.ru/lib/
- 3. Общероссийский математический портал Math-Net.Ru современная информационная система, предоставляющая российским и зарубежным математикам различные возможности в поиске информации о математической жизни в России. Доступ свободный: http://www.mathnet.ru/

12. Материально-техническое обеспечение дисциплины (модуля).

В качестве материально-технического обеспечения дисциплины используются: для проведения лекционных занятий – аудитория (Д416а), оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, в том числе отечественного производства, используемое в учебном процессе при освоении дисциплины «Дополнительные главы математики»: Mathematica Professional Version Educational, MS Office.

13. Образовательные технологии

Количество часов занятий, проводимых в интерактивных формах (решение задач у доски, обсуждение математических моделей для реальных инженерных задач, решение задач группами студентов), составляет 16 часов.