Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР А.В. Бурмистров 09. 2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплинам	Б1.Б.18	Механика	жидкости и	газа	
Направление подгот	(шиф	p)	(наи	менование)	
Профили подготовк	и: «Вакуумна	я и компре	ессорная тех	ника физич	еских устано-
вок»					
Квалификация (степень) выпу	скника	БАКАЛА	BP	
Форма обучения	12 5		РЕМЕРО		
Институт, факу.		<u>M</u>			
Кафедра-1	разработчик р	абочей прог	грамм « <u>Про</u> г	цессы и аппа	раты химиче-
кой технологии»,					
Курс <u>2</u> , се	местры <u>4</u>				

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	-	427 - 6 7 7 7 1
Курсовое проектирование	-	-
Лабораторные занятия	27	0,75
Самостоятельная работа	72	2
Форма аттестации	Экз., 27 час	0,75
Всего	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования №1170 от 20. 10. 2015 по направлению 15.03.02 «Технологические машины и оборудование»

(шифр)

(наименование)

для профиля подготовки <u>«Вакуумная и компрессорная техника физических установок»</u>

на основании учебного плана набора обучающихся 2017-2018 года.

Типовая программа по дисциплине отсутствует.

Разработчик программы:

доцент каф. ПАХТ

(должность)

А.Ш. Бикбулатов

Рабочая программа рассмотрена и одобрена на заседании кафедры ΠAXT протокол от 31.08.19 N_{2} 11

(подпись)

Зав. Кафедрой, профессор

A

(подпись)

А.В. Клинов

(Ф.И.О.)

УТВЕРЖДЕНО

Протокол заседания методической комиссии механического факультета

OT 3.09.18 No 7

Председатель комиссии, доцент

А.В. Гаврилов

(Ф.И.О.)

Нач. УМЦ, доцент

Л.А.Китаева (Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины «Механика жидкости и газа» являются:

- а) формирование знаний об основных законах гидромеханики, усвоение основных закономерностей формирования и движения потоков;
- б) ознакомление с устройством гидро- и пневмосистем;
- в) изучение методов расчета гидро- и пневмосистем
- г) обучение способам применения полученных знаний для решения практических задач

2. Место дисциплины в структуре ООП ВО

Дисциплина «Механика жидкости и газа» относится к *базовой* части ООП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» набор специальных знаний и компетенций.

Для успешного освоения дисциплины «Механика жидкости и газа» бакалавр по направлению подготовки 15.03.02 «Технологические машины и оборудование» должен освоить материал предшествующих дисциплин:

- а)математика,
- б)информатика,
- в) физика,
- г)химия
- д)теоретическая механика,
- ж) инженерная графика.

Дисциплина «Механика жидкости и газа» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) расчет и конструирование элементов вакуумного оборудования,
- б)насосы и компрессоры

Знания, полученные при изучении дисциплины «Механика жидкости и газа» могут быть использованы при прохождении практик производственной, преддипломной

и выполнении выпускных квалификационных работ по направлению подготовки 15.03.02 «Технологические машины и оборудование» .

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- ОПК-2 владеет достаточными для профессиональной деятельности навыками работы с персональным компьютером;
- ПК-2 умеет моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) понятия: поток и его параметры (расход, живое сечение), режим течения (ламинарный, турбулентный), напор, потери напора, пограничный слой, число и критерий подобия, гидравлическое сопротивление, кавитация, гидравлический удар.
- в) уравнения: неразрывности (расхода), Навье-Стокса, Бернулли, основной закон гидростатики и закон Паскаля;

2) Уметь:

- а) определять характер движения жидкостей и газов;
- б) определять параметры и режимы движения потока;
- в) рассчитывать силовое воздействие потока на преграду;
- г)рассчитывать сопротивления различных трубопроводов и аппаратов.

3) Владеть:

- а) методами технологических расчетов различных трубопроводов; методами определения оптимальных и рациональных эксплуатационных режимов их работы, оборудования.
- 4. Структура и содержание дисциплины «Механика жидкости и газа». Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часа.

№ п/п	Раздел дисциплины	Раздел дисциплины		Семестр ля семестра		Виды учебной работы (в часах)				Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)	
			Се		Семинар (Практи- ческие занятия)		CPC				
1	Введение	4	1-2	2							
2	Гидромеханика	4	3-16	14		24	68	Защита лабораторных работ			
3	Гидростатика	4	17-18	2		3	4	Защита лабораторных работ			
	ИТОГО	4	18	18		27	72	Экзамен,27			

5. Содержание лекционных занятий по темам.

Использование изданных учебных пособий и электронных версий курса лекций, а также демонстрационного материала в виде слайдов для графо- и мультимедийного проекторов позволяет существенно ускорить темп чтения лекций и изложить курс за 18 часа.

№	Раздел дис-	Часы	Тема лекционного	Краткое содержание	Ком-
Π/Π	циплины		занятия		петен
					тен-
					ции
1	Введение	2	Жидкости и их физические свойства.	Свойства жидкостей. Жидкое и газообразное агрегатные состояния вещества. Модели сплошной среды. Основные физические свойства флюидов: сжимаемость, текучесть, вязкость. Силы и напряжения, действующие в жидкости. Давление. Поверхностное натяжение. Поток жидкости или газа. Классификация жидких сред. Закон Ньютона для жид-	ОПК-2 ПК-2
				костного трения .Виды и режимы течения.	
	-			Неньютоновские жидкости	
2	Гидроди- намика	14			
		2	Основы кинематики.	Виды и режимы движения жидкости. Пограничный слой. Основные понятия кинематики флюидов: элементарная струйка, живое сечение, расход. Поток жидкости. Средняя скорость. Уравнение расхода для элементарной струйки. Дифференциальное уравнение наразрывности и уравнение сплошности (неразрывности) потока. Безвихревой (ламинарный) и вихревой (турбулентный) режимы	OIIK-2 IIK-2

		,		T	
				движения. Распределение скоростей по сечению круглой трубы при ламинарном и турбулентном течении.	
		2	Динамика вязкой жидкости. Уравнение статики и динамики жидкости.	Дифференциальные уравнения движения вязкой жидкости (уравнение Навье-Стокса) идеальной жидкости (уравнение Эйлера), дифферециальное уравнение равновесия (уравнение Эйлера). Уравнение Бернулли для установившегося движения элементарной струйки идеальной жидкости. Геометрическое и энергетическое толкование уравнения Бернулли. Уравнение Бернулли для элементарной струйки и потока вязкой жидкости. Коэффициент Кориолиса	ОПК-2 ПК-2
		2	Теория подобия.	Гидродинамическое подобие. Числа и критерии подобия.	ОПК-2 ПК-2
		2	Исследование и математическое описание структуры потоков в аппаратах.	Модели идеального вытеснения и смешения. Реальные модели: диффузионная и ячеечная.	ОПК-2 ПК-2
		2	Нестационарные процессы	Силовое воздействие установившегося потока на преграду. Неустановившееся движение несжимаемой жидкости в жестких трубопроводах. Явление гидравлического удара. Понятие о волновых процессах в гидромагистралях. Формулы Жуковского для гидравлического удара. Способы ослабления гидравлического удара. Взаимодействие потока жидкости с твердыми стенками	ОПК-2 ПК-2
		2	Основные закономерности движения двухфазных потоков.	Характеристики двухфазных потоков Модели гомогенного течения, раздельного течения, потока дрейфа. Примеры движения двухфазных потоков: барботаж, пленочное течение жидкости. (Перемещение жидкостей, сжатие и перемещение газов)	ОПК-2 ПК-2
		2	Применение закона Бернулли для решения практических задач.	Определение скорости и расхода жидкости. Истечение жидкости через отверстия и насадки Физическая природа и классификация гидравлических сопротивлений. Потери напора по длине трубы при ламинарном и турбулентном течении (формула Дарси-Вейесбаха). График Никурадзе. Потери напора в местных сопротивлениях. Гидравлический расчет трубопроводов. Потребный напор	ОПК-2 ПК-2
3	Гидроста- тика	2			
		2		Абсолютный и относительный покой жидких сред. Основное уравнение гидростатики и закон Паскаля. Применение уравнения гидростатики для решения практических задач. Давление жидкости на смачиваемую стенку.	ОПК-2 ПК-2

7. Содержание лабораторных занятий

*Це*ли лабораторного практикума заключаются в следующем:

- 1. Закрепление и углубление знаний по теории основных процессов химической технологии.
- 2. Приобретение и совершенствования навыков экспериментальных исследований. Освоение методов обработки опытных данных.
- 3. Изучение устройств. Принципов действия, режимов работы аппаратов на примерах модельных установок.
- 4. Ознакомление с оборудованием и измерительными приборами, а также с организацией и методикой проведения экспериментов.

№	Раздел	Часы	Тема практического	Краткое содержание	Ком-
Π/Π	дисципли-		занятия/семинара		петен
	ны				тен-
					ции
	Гидроме-	24			
	ханика				
1		3	Определение режима	Проведение эксперимента по определению	ОПК-2
			течения воды в ци-	режимов течения.	ПК-2
			линдрической трубе		
			круглого сечения		
2		3	Экспериментальная	Определение потерь напора.	ОПК-2
			демонстрация урав-		ПК-2
			нения Бернулли.		
3		3	Определение потерь	Изучение схемы установки. Определение	ОПК-2
			напора в прямой ци-	сопротивления в прямой трубе.	ПК-2
			линдрической трубе.		
4		3	Определение потерь	Изучение схемы установки. Определение	ОПК-2
			напора в запорных	сопротивления запорных устройств.	ПК-2
			устройствах.		
5		3	Измерение расхода	Изучение установки. Определение расхода	ОПК-2
			воды с помощью	воды.	ПК-2
			диафрагмы.		
6		6	Иолионно опримента	Изучение схемы установки. Изучение	ОПК-2
			Изучение структуры	структуры потоков в прямой трубе.	ПК-2
			потоков в аппаратах.		

7		3	Определение скорости и расхода воды при истечении через отверстия и цилиндрический насадок.	Изучение установки и определение скорости при истечении воды из различных отверстий.	ОПК-2 ПК-2
	Гидроста тика	3			
8		3	Измерение давления и вакуума в покоящейся жидкости.	Изучение схемы установки. Определение абсолютного и избыточного давления.	ОПК-2 ПК-2

^{*}Лабораторные работы проводятся в помещении учебной лабораторий кафедры

8. Самостоятельная работа бакалавра

$\mathcal{N}\!\underline{o}$	Темы, выносимые на самостоятельную	Ча-	Форма СРС	Ком-
n/n	работу	СЫ		петен
				тенци
1	Определение режима течения воды в цилиндрической трубе круглого сечения	8	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2
2	Экспериментальная демонстрация уравнения Бернулли	8	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2
3	Измерение давления и вакуума в покоящейся жидкости	8	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2
4	Определение потерь напора в прямой цилиндрической трубе	8	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2
5	Определение потерь напора в запорных устрой-ствах	8	Выполнение расчета, оформление отчета	ОПК-2 ПК-2
6	Измерение расхода воды с помощью диафрагмы	8	Выполнение расчета, оформление отчета	ОПК-2 ПК-2
7	Изучение структуры потоков в аппаратах	16	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2
8	Определение скорости и расхода воды при истечении через отверстия и цилиндрический насадок	8	Подготовка к лабораторному занятию, выполнение расчета	ОПК-2 ПК-2

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности студентов в рамках дисциплины «Механика жидкости и газа» используется рейтинговая система, соответствующая «Положению о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» (Утверждено решением УМК Ученого совета

ФГБОУ ВО «КНИТУ», протокол №7 от 4 сентября 2017 г.). Рейтинговая оценка формируется на основании текущего и промежуточного контроля.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	8	36	60
Экзамен		24	40
Итого:		60	100

При расчете текущего рейтинга $\mathbf{R}^{\mathsf{тек}}$ за семестр каждая работа студента оценивается по пятибалльной шкале (возможны дробные оценки, например, 3,8 или 4,5). Работа считается зачтённой, если изначальный балл ≥ 3 . В случае несвоевременной сдачи работы может вводиться понижающий коэффициент 0,8, а при отсутствии студента на занятии без уважительной причины и последующей отработки — коэффициент 0,6. По завершении семестра определяются средние баллы, набранные студентом по всем видам работ. Текущий рейтинг студента за семестр рассчитывается следую-

 ${f R}^{{\sf тек}} = 12 \cdot (\sum_{i=1}^n {f a}_i {f B}_i)$ щим образом: ${f B}_i$ - средний за семестр балл студента по работам вида ${\bf i}$; ${f a}_i$ - весовой множитель (доля), определённый лектором для работ вида ${\bf i}$; ${f n}$ - количество видов работ в семестре.

Таким образом, для допуска к экзамену текущий рейтинг студента должен составить от 36 до 60 баллов. По дисциплине «Механика жидкостей и газов» предусмотрены лабораторные работы. Распределение весовых множителей по семестру следующее: 4-й - ${\bf a}_{\rm J}$ =1;

При положительной сдаче экзамена студент может набрать ${\bf R}^{{\bf 9}}$ от 24 до 40 баллов.

При этом каждый вопрос экзамена также оценивается пятибалльной шкале.

Балл вопроса учитывается при расчете \mathbf{R}^3 , если он ≥ 3 . $\mathbf{R}^3 = 8(\sum_{i=1}^{\mathbf{s}} \mathbf{G}_i^3) / \mathbf{B}$, где \mathbf{G}_i^3 балл за соответствующий экзаменационный вопрос, \mathbf{g} — количество вопросов в билете. При защите проекта \mathbf{R}^3 определяется комиссией.

Рейтинг по дисциплине $\mathbf{R}^{\text{лис}}$ находится суммированием баллов текущего $\mathbf{R}^{\text{тек}}$ и экзаменационного \mathbf{R}^{3} рейтингов. Перевод рейтинга по дисциплине в традиционную шкалу оценок осуществляется следующим образом:

$$0 \le \mathbf{R}^{\mathsf{диc}} \prec 60$$
 — неудовлетворительно; $60 \le \mathbf{R}^{\mathsf{диc}} \prec 73$ — удовлетворительно; $73 \le \mathbf{R}^{\mathsf{дuc}} \prec 87$ — хорошо; $87 \le \mathbf{R}^{\mathsf{дuc}} \le 100$ — отлично.

10. Информационно-методическое обеспечение дисциплины

10.1 Основная литература

При изучении дисциплины «Механика жидкости и газа» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Касаткин, А.Г. Основные процессы и аппараты	99 экз. в УНИЦ КНИТУ
химической технологии / А.Г.Касаткин. – 14-е	
изд., стереотип. – М.: Альянс, 2008. – 750 с.	
2. Разинов, А.И. Гидромеханические и теплооб-	416 экз. в УНИЦ КНИТУ
менные процессы и аппараты химической техно-	
логии: учебное пособие /А.И. Разинов, О.В. Ма-	
минов, Г.С. Дьяконов - Казань: изд-во КГТУ,	
2007. – 212 c.	
3. Основные процессы и аппараты химической	987 экз. в УНИЦ КНИТУ
технологии: пособие по проектированию / Г.С.	
Борисов [и др.]; под. ред. Ю.И. Дытнерского. – 3-	
е изд., стереотип. – М.: Альянс, 2007. – 496 с.	
4. Лабораторный практикум по процессам и ап-	1559 экз. в УНИЦ КНИТУ
паратам химической технологии: учеб. пособие /	
; Ф.А. Абдулкашапова, А.Ш. Бикбулатов, В.Г.	
Бочкарев [и др.]; Казан. гос. технол. ун-т; под	
ред. Г.С. Дьяконова .— Казань, 2005 .— 235 с.	

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Павлов, К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии / К.Ф. Павлов, П.Г. Романков, А.А. Носков. -13 -е изд., стереотип. $-$ М.: Альянс, 2007575 с.	99 экз. в униц книту
2. Клинов, А.В. Математическое моделирование химико-технологических процессов: учебное пособие / А.В. Клинов, А.Г. Мухаметзянова – Казань: изд-во КГТУ, 2009. – 136с.	70 экз. в УНИЦ КНИТУ
3. Клинов, А.В. Лабораторный практикум по математическому моделированию химико-технологических процессов: учебное пособие / А.В. Клинов, А.В. Малыгин – Казань: изд-во КГТУ, 2011. – 104с.	114 экз. в УНИЦ КНИТУ
4. Проектный кинетический расчет насадочной колонны для непрерывной ректификации многокомпонентной смеси: метод. указания / сост. Г.С. Дьяконов [и др.]; Казан. гос. технол. ун-т. – Казань, 2007. – 24 с.	11 экз. в УНИЦ КНИТУ, 115 экз. на каф. ПАХТ

10.3 Электронные источники информации

При изучении дисциплины «Механика жидкости и газа» использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ http://ruslan.kstu.ru/
- 2. ЭБС «ЮРАЙТ» http://www/biblio-online.ru/
- 3. ЭБС «Руконт» http://rucont.ru/
- 4. ЭБС «Лань» http://e.lanbook.com/
- 5. ЭБС «КнигаФонд» http://www.knigafund.ru/

Согласовано:

Зав.сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОЗУАРСТВЕННОЕ ЕЮДЖЕТНОЕ ОБРАЮВАТЕ А ПОТ УЧРУЖДЕНИЕ ВЫСШЕГО ОБРАЗДИ МНЯ ОБРАЖЕНИЕ ВЫСШЕГО ОБРАЖДИМИЯ НОСЛЕДОВАТЕЛЬСКИЯ УКАНОЛОГИИСКИЯ УНИВЕРСИТЕТЬ ОСОГОО НО УЧРЫ И И И ОГОРУАЦИОННЫЙ ЦЕНТР

11. Оценочные средства для определения результатов освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом, представленной в ФОС.

12.Материально-техническое обеспечение дисциплины (модуля)

1. Лекционные занятия:

- а. комплект электронных презентаций/слайдов,
- b. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук),

2. Практические занятия

- а. лаборатория гидравлики, оснащенная необходимым оборудованием,
- b. лаборатория тепло-массообменных установок, оснащенная необходимым оборудованием,
- с. шаблоны отчетов по лабораторным работам,
- d. компьютерный класс.

3. Прочее

- а. рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- b. рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Весь лекционный курс обеспечен учебными пособиями, раздаточным материалом и комплектом слайдов, что позволяет вести активный диалог со студентами. При защите лабораторных работ организуются дискуссии между студентами. Занятия, проводимые в интерактивных формах, при изучении дисциплины «Механика жидкости и газа» составляют 12 часов аудиторных занятий, требуемых учебным планом.

Лабораторный практикум изложен в учебном пособии [4], необходимый тираж которого имеется в библиотеке, что позволяет студентам самостоятельно готовиться к лабораторным работам, проводить обработку результатов и оформление отчетов.

При использовании интерактивных форм обучения преподаватель перестаёт быть центральной фигурой, он лишь регулирует процесс и занимается его общей организацией, готовит заранее необходимые задания и формулирует вопросы или темы для обсуждения в группах, консультирует, контролирует время и порядок выполнения намеченного плана.

Роль преподавателя заключается в следующем: во первых преподаватель способствует личному вкладу студентов и свободному обмену мнениями при подготовке
к интерактивному обучению; во вторых - обеспечивает дружескую атмосферу для
студентов и проявляет положительную и стимулирующую ответную реакцию; в третьих - облегчает подготовку к занятиям, но не должен сам придумывать аргументы
при дискуссиях; в четвертых - провоцирует интерес, затрагивая значимые для студентов проблемы и обеспечивает широкое вовлечение в разговор как можно большего
количества студентов; в пятых анализирует и оценивает проведенное занятие, подводит итоги, результаты (для этого надо сопоставить сформулированную в начале занятия цель с полученными результатами, сделать выводы, вынести решения, оценить
результаты, выявить их положительные и отрицательные стороны); и в итоге подводит группу к конструктивным выводам, имеющим познавательное и практическое
значение.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине «Механика жидкости и газа»

По направлению $\frac{15.03.02}{(mu\phi p)}$ «Технологические машины и оборудование»

для профиля «Вакуумная и компрессорая техника физических установок » для набора обучающихся 2019 г.

пересмотрена на заседании кафедры ПАХТ

Очная форма обучения

(наименование кафедры)

Дата переутверждения РП	Налич ие измен е-ний	Наличие изменений в списке литературы	Подпись разработ-чика РП	Подпись заведующе- го кафедрой	Подпись начальника УМЦ Китаева Л.А
Протокол заседания кафедры №7 от 03.07.2019	Есть*	Нет	Бикбулатов А.Ш.	Клинов А.В.	Mans

- * Пункт Профессиональные базы данных и информационные справочные системы
- 1. Стандартная справочная база данных NIST https://webbook.nist.gov/chemistry/.
- 2. База данных CoolProp http://www.coolprop.org/v4/index.html.

Дополнение в пункт 12: Лицензированное свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины

- 1. Mathcad Education-University Edition
- 2. Аскон Компас 3Dv14