Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет»

(ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР Бурмистров А.В.

» 2019 г.

РАБОЧАЯ ПРОГРАММА

То дисциплине «Вычислительная математика»					
Направление подготовки 09.03.02 «Информационные системы и технологии»					
Профиль подготовки Информационные системы и технологии					
Квалификация (степень) выпускникабакалавр					
Форма обученияочная/ заочная					
Институт, факультет Институт технологии легкой промышленности, моды и					
цизайна, Факультет дизайна и программной инженерии					
Кафедра-разработчик рабочей программы Информатики и прикладной					
математики					
Курс, семестр <u>2, 4 / 3,6</u>					

	Очная	форма	Заочная форма	
	Часы	Зачетные	Часы	Зачетные
		единицы		единицы
Лекции	36	1	8	0,22
Практические занятия				
Лабораторные занятия	36	1	12	0,33
Контроль самостоятельной				
работы				
Самостоятельная работа	72	2	151	4,2
Форма аттестации: экзамен	36	1	9	0,25
Всего	180	5	180	5

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 926 от 19.09.2017 по направлению 09.03.02 «Информационные системы и технологии» на основании учебного плана набора обучающихся 2019 года.

Разработчики программы:

профессор кафедры ИПМ

доцент каф. ИПМ

Е. Р. Бадертдинова

А. Н. Титов

Рабочая программа рассмотрена и одобрена на заседании кафедры Информатики и прикладной математики, протокол от 14.06.2019 г. № 5.

Зав. кафедрой ИПМ

Н.К. Нуриев

УТВЕРЖДЕНО

Начальник УМЦ, доцент

Л.А.Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Вычислительная математика» являются

- а) формирование знаний о теории погрешностей и теории приближений,
- б) обучение технологии получения решения задач математики и ее приложений с помощью ЭВМ,
- в) обучение способам применения вычислительных методов для решения задач математики и ее приложений,
- г) раскрытие сущности процессов, происходящих при использовании вычислительных методов для решения различных задач профессиональной деятельности.

2. Место дисциплины (модуля) в структуре основной образовательной программы

Дисциплина «Вычислительная математика» относится к части, формируемой участниками образовательных отношений ООП, и формирует у бакалавров по направлению подготовки 09.03.02 набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Вычислительная математика» бакалавр по направлению подготовки 09.03.02 должен освоить материал предшествующих дисциплин:

- а) Математический анализ;
- б) Алгебра и геометрия;
- в) Информатика;
- г) Дискретная математика.

Дисциплина «Вычислительная математика» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Методы оптимизации;
- б) Моделирование физических процессов.

Знания, полученные при изучении дисциплины «Вычислительная математика» могут быть использованы при прохождении практик и выполнении выпускной квалификационной работы.

3. Компетенции и индикаторы достижения компетенции обучающегося, формируемые в результате освоения дисциплины

- ПК-8 Владеть специальными знаниями и умениями для решения практических задач в области информационных систем и технологий
- ПК-8.1 Знает типовые решения, библиотеки программных модулей, шаблоны, классы объектов, используемые при разработке программного обеспечения.
- ПК-8.2 Умеет проводить оценку работоспособности программного продукта; документировать произведенные действия, выявленные проблемы и способы их устранения; кодировать на языках программирования.
- ПК-8.3 Владеет технологиями применения вычислительных методов для решения конкретных задач из различных областей математики и ее

приложений.

В результате освоения дисциплины обучающийся должен

- 1) Знать: а) основы теории погрешностей и теории приближений;
 - б) основные численные методы алгебры;
 - в) численные методы решения уравнений в частных производных;
 - г) методы построения интерполяционных многочленов;
 - д) методы численного дифференцирования и интегрирования;
 - е) численные методы решения обыкновенных дифференциальных уравнений.
- 2) Уметь: а) решать алгебраические и трансцендентные уравнения, применяя для этого метод половинного деления, простых итераций, хорд, касательных;
 - б) численно решать системы алгебраических уравнений методом Гаусса, методом итераций, методом прогонки;
 - в) интерполировать, используя интерполяционный полином Лагранжа, интерполяционные формулы Ньютона, сплайны;
 - г) применять формулы численного дифференцирования и интегрирования;
 - д) применять методы численного решения некоторых уравнений в частных производных;
 - е) применять численные методы для решения задач оптимизации.
- 3) Владеть: а) технологиями применения вычислительных методов для решения конкретных задач из различных областей математики и ее приложений;
 - б) навыками практической оценки точности результатов, полученных в ходе решения тех или иных вычислительных задач, на основе теории приближений;
 - в) основными приемами использования вычислительных методов при решении различных задач профессиональной деятельности;
 - г) навыками решения задач с помощью интегрированных сред.

4. Структура и содержание дисциплины «Вычислительная математика»

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

Л п	Раздел				ды учебн		Оценочные
11 п	дисциплины	Семестр		работы(в часах) очная форма(заочная форма)			средства для проведения промежуточной
		Cen	Лекц ии	Практич еские занятия	Лабора торные работы	СРС	аттестации по разделам
1.	Теория погрешностей	4	2	-	2	4	Расчетная работа, лабораторная работа, тестирование
2.	Численные методы поиска корней алгебраических и трансцендентных уравнений	4 (5,6)	6(1)	-	6 (2)	12 (4+36)	расчетная работа, лабораторная работа, тестирование
3.	Решение систем линейных алгебраических уравнений	4(6)	6	-	6	12	расчетная работа, лабораторная работа, тестирование
4.	Приближение функций	4 (5, 6)	4(1)	-	4 (2)	8 (3+36)	расчетная работа, лабораторная работа, тестирование
5.	Интерполяция, численное дифференцировани е и интегрирование	4(6)	6(3)	-	6 (4)	12 (36)	контрольная работа, лабораторная работа, тестирование
6.	Численные методы решения обыкновенных дифференциальных уравнений и систем дифференциальных уравнений	4(6)	6(3)	-	6 (4)	12 (36)	расчетная работа, лабораторная работа, тестирование
7.	Задачи оптимизации	4	6	-	6	12	контрольная работа, лабораторная работа, тестирование
	ИТОГО		36 (2+6)		36 (12)	72 (7+144)	
	Форма аттестации					Очная ф	рорма: экзамен (36); форма: экзамен (9ч.)

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№	Раздел дисциплины	Часы	Тема лекционного	Краткое содержание	Индикаторы достижения
	дисциплины		лекционного занятия		компетенции
1.	Теория погрешностей	2	Тема 1. Теория погрешностей	Способы хранения чисел в памяти ЭВМ. Приближенные значения и погрешности. Абсолютная и относительная погрешности.	ПК 8.3
2.	Численные методы поиска корней алгебраических и трансценденти ых уравнений	6(1)	Тема 2 Численные методы решения уравнений	Метод деления отрезка пополам, метод касательных, метод простой итерации, метод хорд. Решение в системах компьютерной математики.	ПК 8.1, ПК 8.2, ПК 8.3
3.	Решение систем линейных алгебраических уравнений	6	Тема 3. Решение систем линейных алгебраических уравнений	Прямые и итерационные методы решения СЛАУ. Частные случаи решения СЛАУ. Метод Гаусса, метод Якоби и метод Зейделя для решения СЛАУ. Условия сходимости методов.	ПК 8.1, ПК 8.2, ПК 8.3
4.	Приближение функций	4 (1)	Тема 4. Аппроксимация.	Аппроксимация. Метод средних точек для выбора вида зависимости. Метод наименьших квадратов для поиска коэффициентов выбранной зависимости. Решение в системах компьютерной математики.	ПК 8.1, ПК 8.2, ПК 8.3
5.	Интерполяция, численное дифференциров ание и интегрирование	6 (3)	Тема 5. Интерполяция. Численное дифференцирован ие. Численное интегрирование.	Интерполяция алгебраическими полиномами. Численное дифференцирование. Численное	ПК 8.1, ПК 8.2, ПК 8.3

				T	
				интегрирование. Квадратурные формулы прямоугольников, трапеций, Симпсона для вычисления определенных интегралов. Решение в системах компьютерной математики.	
6.	Численные методы решения обыкновенных дифференциаль ных уравнений и систем дифференциаль ных уравнений	6(3)	Тема 6. Численные методы решения обыкновенных дифференциальны х уравнений. Решение систем дифференциальны х уравнений первого порядка. Решение дифференциальны х уравнений высших порядков методом Эйлера.	Численные методы решения обыкновенных дифференциальных уравнений. Задача Коши для обыкновенного дифференциального уравнения 1-го порядка (метод Эйлера и Рунге-Кутта). Решение систем дифференциальных уравнений первого порядка. Метод Эйлера. Решение дифференциальных уравнений высших порядков методом Эйлера. Решение в системах компьютерной математики.	ПК 8.1, ПК 8.2, ПК 8.3
7.	Задачи оптимизации	6	Тема 7. Методы одномерной и многомерной оптимизации.	Методы дихотомии и золотого сечения. Метод покоординатного спуска, градиентные методы. Задачи линейного программирования. Решение в системах компьютерной математики.	ПК 8.1, ПК 8.2, ПК 8.3

6. Содержание практических занятий

Учебным планом программы 09.03.02 проведение практических занятий по дисциплине «Вычислительная математика» не предусмотрено.

7. Содержание лабораторных занятий

Цель проведения лабораторных занятий — освоение лекционного материала и выработка определенных умений, необходимых для освоения вычислительных методов решения инженерных, математических задач и приобретение навыков самостоятельной реализации их на ЭВМ.

№ п/п	Раздел дисциплины	Часы	Наименование лабораторной работы	Индикаторы достижения компетенции
1	Теория погрешностей	2	Лабораторная работа 1. Определение значащих цифр числа, абсолютной и относительной погрешности.	ПК 8.3
2	Численные методы поиска корней алгебраических и трансцендентных уравнений	6 (2)	Лабораторная работа 2. Решение алгебраических и трансцендентных уравнений приближенными методами (методы половинного деления, простых итераций, хорд, касательных). Решение уравнений в системе Scilab.	ПК 8.1, ПК 8.2, ПК 8.3
3	Решение систем линейных алгебраических уравнений	6	Лабораторная работа 3. Решение систем линейных уравнений методом Гаусса. Решение систем линейных уравнений приближенными методами. Решение СЛАУ в системе Scilab.	ПК 8.1, ПК 8.2, ПК 8.3
4	Приближение функций	4 (2)	Лабораторная работа 4. Решение задачи аппроксимации методом наименьших квадратов. Решение задачи аппроксимации в системе Scilab.	ПК 8.1, ПК 8.2, ПК 8.3
5	Интерполяция, численное дифференцирован ие и интегрирование	6 (4)	Лабораторная работа 5. Интерполяционные полиномы Ньютона и Лагранжа. Решение задачи интерполяции в системе Scilab. Лабораторная работа 6. Задача обратной интерполяции. Численное дифференцирование Работа с системой Scilab. Лабораторная работа 7 Численное интегрирование. Обобщенные формулы	ПК 8.1, ПК 8.2, ПК 8.3

			прямоугольников трапеций, Симпсона. Погрешности формул численного интегрирования. Работа с системой Scilab.	
6	Численные методы решения обыкновенных дифференциальны х уравнений и систем дифференциальны х уравнений	6 (4)	Лабораторная работа 8. Решение обыкновенных дифференциальных уравнений первого порядка. Методы Эйлера и Рунге-Кутта. Лабораторная работа 9. Решение систем дифференциальных уравнений и дифференциальных уравнений уравнений высших порядков. Работа с системой Scilab.	ПК 8.1, ПК 8.2, ПК 8.3
7	Задачи оптимизации	6	Лабораторная работа 10. Решение задач одномерной оптимизации. Методы дихотомии и золотого сечения. Работа с системой Scilab. Лабораторная работа 11. Решение задач многомерной оптимизации. Метод покоординатного спуска, градиентные методы. Работа с системой Scilab. Лабораторная работа 12. Решение задачи линейного программирования. Работа с системой Scilab.	ПК 8.1, ПК 8.2, ПК 8.3

Лабораторные работы проводятся в компьютерных классах кафедры ИПМ с использованием компьютеров, электронной интерактивной доски, системы электронного обучения и тестирования Moodle и глобальной сети Интернет.

8. Самостоятельная работа бакалавра

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Индикаторы достижения
11/11	самостоятельную раооту			компетенции
1	Тема 1. Вычисление		Изучение лекционного	ПК 8.3
	погрешностей результатов	4	материала и	
	арифметических действий.	4	рекомендуемой	
			литературы.	
2	Тема 2. Решение уравнений.		Изучение лекционного	ПК 8.1,
	Комбинированный метод	12	материала и	ПК 8.2,
	хорд и касательных.	(4+36)	рекомендуемой	ПК 8.3
	Применение системы Scilab		литературы. Подготовка	

	для решения уравнений.		к лабораторным работам. Выполнение задания.	
3	Тема 3. Решение СЛАУ. Вычисление определителей и обращение матриц методом Гаусса.	12	Изучение лекционного материала и рекомендуемой литературы. Выполнение задания.	ПК 8.1, ПК 8.2, ПК 8.3
4	Тема 4. Задача аппроксимации. Метод наименьших модулей, метод равномерного приближения. Применение системы Scilab для решения задачи аппроксимации.	8 (3+36)	Изучение лекционного материала и рекомендуемой литературы. Подготовка к лабораторным работам. Выполнение задания.	ПК 8.1, ПК 8.2, ПК 8.3
5	Тема 5. Интерполяция сплайнами. Экстраполяция. Обратная интерполяция. Применение системы Scilab для решения задач интерполяции, дифференцирования численного интегрирования.	12 (36)	Изучение лекционного материала и рекомендуемой литературы. Выполнение задания. Подготовка к контрольной работе.	ПК 8.1, ПК 8.2, ПК 8.3
6	Тема 6. Численное решение обыкновенных дифференциальных уравнений высших порядков.	12 (36)	Изучение лекционного материала и рекомендуемой литературы. Подготовка к лабораторным работам. Выполнение задания.	ПК 8.1, ПК 8.2, ПК 8.3
7	Тема 7. Задачи оптимизации. Градиентные методы решения задач многомерной оптимизации. Решение задач оптимизации в системе Scilab	12	Изучение лекционного материала и рекомендуемой литературы. Подготовка к лабораторным работам. Выполнение задания. Подготовка к контрольной работе.	ПК 8.1, ПК 8.2, ПК 8.3

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности обучающихся в рамках дисциплины «Вычислительная математика» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в «Положении о балльнорейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» ФГБОУ ВО КНИТУ.

При изучении дисциплины для очной формы обучения

предусматривается экзамен, выполнение двух контрольных работ, 12 лабораторных работ и 5 расчетных работ. Для заочной формы обучения предусматривается экзамен, выполнение одной контрольной работы, 8 лабораторных работ (2, 4, 5, 7, 8, 9) и 4 расчетных работ. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу).

Оценочные средства	Кол-во Очная форма (заочная форма)	Міп, баллов	Мах, баллов
Лабораторная работа	12 (6)	18	30
Контрольная работа	2(1)	8	13
Расчетная работа	5 (4)	10	17
Экзамен	1	24	40
Итого:		60	100

10.Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины 11.1. Основная литература

При изучении дисциплины «Вычислительная математика» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
1. Бахвалов, Н. С. Численные	ЭБС Znanium.com
методы: Учебник / Бахвалов Н.С.,	https://znanium.com/catalog/product/539069
Жидков Н.П., Кобельков Г.М., - 8-е	Доступ с любой точки интернет после
изд., 90ЭЛ Москва :БИНОМ.	регистрации с ІР-адресов КНИТУ
Лаб. знаний, 2015 639 с.	
2. Пантина, И. В. Вычислительная	ЭБС Znanium.com
математика [Электронный ресурс]	https://znanium.com/catalog/product/451160
: учебник / И. В. Пантина, А. В.	Доступ с любой точки интернет после
Синчуков 2-е изд., перераб. и	регистрации с ІР-адресов КНИТУ
доп Москва : МФПУ Синергия,	
2012 176 c.	
3. Калиткин, Н. Н. Численные методы:	ЭБС Znanium.com
Учебное пособие / Калиткин Н.Н., - 2-	http://znanium.com/catalog/product/944508
е изд., исправленное СПб:БХВ-	Доступ с любой точки интернет после
Петербург, 2015 587	регистрации с ІР-адресов КНИТУ
4. Колдаев В.Д. Численные методы и	ЭБС Znanium.com
программирование: Учебное	http://znanium.com/catalog/product/1003943
пособие / В.Д. Колдаев; Под ред.	Доступ с любой точки интернет после
Гагариной Л.Г ИД «ФОРУМ» :	регистрации с ІР-адресов КНИТУ
ИНФРА-М, 2019. — 336 с.	

11.2 Дополнительная литература.

В качестве дополнительных источников информации рекомендуется спользовать следующую литературу:

использовать следующую литературу:	TC
Дополнительные источники	Кол-во экз.
информации	
1. Пантина, И. В. Вычислительная	ЭБС Znanium.com
матема-тика [Электронный ресурс]:	https://znanium.com/catalog/product/451160
учебник / И. В. Пантина, А. В. Синчуков	Доступ с любой точки интернет после
2-е изд., перераб. и доп Москва : МФПУ	регистрации с ІР-адресов КНИТУ
Синергия, 2012 176 с.	
2. Орешкова М.Н., Численные методы /	ЭБС "Консультант студента":
Орешкова М.Н Архангельск: ИД	[сайт]https://www.studentlibrary.ru/book/ISBN/
САФУ, 2015 120 с.	ISBN9785261010401.html
	Доступ с любой точки интернет после
	регистрации с ІР-адресов КНИТУ
2. Зализняк, В. Е. Теория и практика	ЭБС Znanium.com
по вычислительной математике : учеб.	https://znanium.com/catalog/product/441232
пособие / В. Е. Зализняк, Г. И.	Доступ с любой точки интернет после
	регистрации с ІР-адресов КНИТУ

Щепановская Красноярск: Сиб. федер. ун-т, 2012 174 с. 4. Петров И.Б., Введение в вычислительную математику / Петров И.Б., Лобанов А.И М.: Национальный Открытый Университет "ИНТУИТ", 2016. 5. Тазиева Р.Ф., Титов А.Н. Обработка экспериментальных данных. Учебное пособие: в 2-х Ч. Ч.1 – Казань:	ЭБС "Консультант студента" : [сайт] https://www.studentlibrary.ru/book/intuit 051.html Доступ с любой точки интернет после регистрации с IP-адресов КНИТУ 66 экз. в УНИЦ КНИТУ
изд-во КНИТУ, 2017. – 96 c.	
6. Тазиева Р.Ф., Титов А.Н. Обработ- ка экспериментальных данных. Учеб- ное пособие: в 2-х Ч. Ч.2 – Казань: изд-во КНИТУ, 2018. – 136 с.	66 экз. в УНИЦ КНИТУ

11.3. Электронные источники информации

При изучении дисциплины «Вычислительная математика» рекомендуется использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Научная Электронная Библиотека (НЭБ) Режим доступа: http://elibrary.u
- 3. ЭБС «Лань» Режим доступа: http://e.lanbook.com/books/
- 4. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/
- 5. ЭБС «Znanium.com» Режим доступа: http://znanium.com/

Согласовано: Зав. сектором ОКУФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНКЯ «КАЗАНСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Учебно-научный информационный центу

11.4. Современные профессиональные базы данных и информационные справочные системы

- 1. Единое окно доступа к образовательным ресурсам Российской Федерации. Доступ свободный: http://window.edu.ru/window/library/
 - 2. Федеральный портал «Российское образование»: http://edu.ru
- 3. Научная электронная библиотека. Доступ с любой точки Интернет после регистрации с IP-адресов КНИТУ: http://elibrary.ru/
- 4. Электронная база данных JSTOR. Доступ с любой точки Интернет после регистрации с IP-адресов КНИТУ: http:// https://www.jstor.org/

12. Материально-техническое обеспечение дисциплины (модуля).

Учебные аудитории для проведения учебных занятий оснащены оборудованием:

- 1. парты,
- 2. стулья,
- 3. доска;

техническими средствами обучения:

- 1. проектор,
- 2. персональные компьютеры с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационную среду КНИТУ и систему электронного обучения и тестирования Moodle.

Помещения для самостоятельной работы оснащены компьютерной техникой:

1. персональные компьютеры с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационную среду КНИТУ и систему электронного обучения и тестирования Moodle. Допускается замена оборудования его виртуальными аналогами.

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «Вычислительная математика»:

- 1. Scilab,
- 2. Microsoft Office.

13.Образовательные технологии

Количество занятий (в часах), проводимых в интерактивных формах – 18 часов для очной и 2 часа для заочной формы обучения.

При чтении лекций используется модульная объектно-ориентированная цифровая обучающая среда Moodle и интерактивная электронная доска. Все лабораторные занятия проводятся в компьютерных классах кафедры ИПМ с использованием электронной интерактивной доски, ПК с выходом в глобальную сеть Интернет и среды дистанционного обучения Moodle.

Основные интерактивные формы проведения учебных занятий:

- работа в обучающей среде Moodle;
- работа в режиме видеоконференции.