Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО КНИТУ)

«Утверждаю» Проректор по УР А.В. Бурмистров » 2020г.

РАБОЧАЯ ПРОГРАММА

По производственной (технологической (проектно-технологической)) практике студентов очной формы обучения

Специальность 18.05.01 - Химическая технология энергонасыщенных

материалов и изделий

Специализация – Химическая технология органических соединений азота

Квалификация инженер

Форма обучения очная

Институт, факультет ИХТИ, ФЭМИ

Кафедра ХТОСА

Курс, семестр 4, 8

Рабочая программа составлена с учетом требований ФГОС ВО № 907 от 07.08.2020 г по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» на основании учебного плана набора обучающихся 2020 года

Разработчик программы: Доц. каф. XTOCA	7	Ю.Б. Баранова
Рабочая программа рассмотрена и протокол от «28» августа 2020 г		афедры XTOCA,
Зав. кафедрой		Р.З. Гильманов
СОГЛАСОВАНО Зав. учебно-произв. Практикой		<u>А.А. Алексеева</u> « » 2020г

«____»___

1. Цель, вид практики, способ и форма ее проведения

Целями производственной (технологической (проектно-технологической)) практики является изучение и подбор необходимых материалов и документации по тематике работы для подготовки к курсовому проектированию и защите курсового проекта по дисциплине Проектирование и оборудование предприятий синтеза энергонасыщенных материалов.

Вид практики – производственная.

Тип технологической (проектно-технологической)

Способы проведения практики: стационарная и/или выездная.

Практика проводится в следующей форме:

дискретно - путем выделения в календарном учебном графике непрерывного периода учебного времени.

2. Место производственной практики (технологической (проектно-технологической)) в структуре образовательной программы

Практика относится к части программы подготовки специалитета, формируемой участниками образовательных отношений

Для успешного освоения программы преддипломной практики по специальности <u>18.05.01</u> студент должен освоить материал предшествующих практике учебных дисциплин в соответствие с учебным планом.

Полученные в ходе прохождения практики знания, навыки умения являются базой для изучения следующих дисциплин:

Химическая технология бризантных и инициирующих энергонасыщенных материалов

Химия гетероциклических соединений азота

Технология смесевых энергонасыщенных материалов

Принципы создания энергонасыщенных соединений

Современные физико-химические методы анализа энергонасыщенных материалов

Расчетные и экспериментальные методы определения взрывчатых характеристик энергонасыщенных материалов

Химическая технология мощных, термостойких энергонасыщенных материалов

Программные средства и информационные технологии

Теория и методы инженерного эксперимента

Новые эффективные инициирующие энергонасыщенные материалы для боеприпасов и средств инициирования

Производственная практика (преддипломная практика)

Производственная практика (научно-исследовательская работа)

Компетенции и индикаторы достижения компетенции обучающегося, формируемые в результате освоения дисциплины

ПК-1 Способен применять современные знания по химии и технологии индивидуальных и смесевых взрывчатых материалов и их отдельных компонентов для создания производств и управления технологическим процессом, прогнозировать и регулировать основные эксплуатационные свойства, при постановке задач по исследованию взрывчатых материалов и проектированию технологии штатных и новых энергонасыщенных материалов и изделий на их основе

ПК-1.1 Знает сырьевую базу промышленного производства энергонасыщенных материалов и изделий, методы получения, свойств и показателей качества исходных продуктов;

методы управления действующими технологическими процессами получения индивидуальных и смесевых взрывчатых веществ, принципов создания энергонасыщенных материалов, принципы прогнозирования и регулирования основных эксплуатационных свойств при проектировании действующих и новых технологий новых взрывчатых материалов и изделий

- ПК-1.2 Умеет определять параметры технологических процессов получения, и их влияние на свойства исходных компонентов индивидуальных и смесевых взрывчатых материалов
- ПК-1.3 Владеет навыками управления и контроля технологическими процессами получения исходных компонентов индивидуальных и смесевых взрывчатых материалов, навыками прогнозирования и регулирования технологических параметров, основанных на знании эксплуатационных свойств, за счет технологических параметров, эксплуатационных свойств исходных компонентов индивидуальных и смесевых взрывчатых материалов и изделий на их основе
- ПК-2 Способен разрабатывать методики и программы проведения исследований индивидуальных и смесевых взрывчатых материалов и изделий на их основе, испытания и контроля параметров технологических процессов их получения
- ПК-2.1 Знает теоретические основы современных методов исследования структуры и свойств энергонасыщенных материалов, условия реализации и границы применения этих методов; специфику анализа энергонасыщенных материалов, назначение и принципы работы современной аппаратуры, применяемой при анализе энергонасыщенных материалов
- ПК-2.2 Умет применять современные методы исследований, программы испытаний индивидуальных и смесевых взрывчатых материалов
- ПК-2.3 Владеет расчетными и экспериментальными методами анализа физикохимических свойств материалов; навыками работы с современными научными приборами для исследования структуры и физико-химических характеристик энергонасыщенных материалов корректной обработки и анализа полученных результатов
- ПК-3 Способен синтезировать и исследовать физико-химические, взрывчатые и физико-механические свойства индивидуальных и смесевых взрывчатых материалов
- ПК-3.1 Знает физико-химические, взрывчатые и физико-механические свойства индивидуальных и смесевых взрывчатых материалов и изделий
- ПК-3.2 Умеет синтезировать индивидуальные и смесевые взрывчатые материалы и изделия на их основ
- ПК-3.3 Владеет навыками исследования физико-химических, взрывчатых и физико-механических свойств синтезированных индивидуальных и смесевых взрывчатых материалов и изделий на их основе
- ПК-4 Способен применять современные методы исследования, проводить стандартные и сертификационные испытания материалов, изделий и технологических процессов, индивидуальных и смесевых взрывчатых материалов
- ПК-4.1 Знает современные методы исследований, стандартных и сертификационных испытаний индивидуальных и смесевых взрывчатых материалов и изделий на их основе
- ПК-4.2 Умеет применять современных методы исследований, разрабатывать программы испытаний индивидуальных и смесевых взрывчатых материалов
- ПК-4.3 Владеет навыками проведения стандартных и сертификационных испытаний индивидуальных и смесевых взрывчатых материалов и изделий на их основе
- ПК-5 Способен участвовать в проектировании и проведении процессов утилизации боеприпасов, компонентов, индивидуальных и смесевых взрывчатых материалов
- ПК-5.1 Знает принципы организации и методы оценки эффективности производств, занятых утилизацией энергонасыщенных материалов и изделий
- ПК-5.2 Умеет моделировать технологические процессы утилизации изделий и переработки, область использования утилизируемых материалов

ПК-5.3 Владеет принципами перепрофилирования производств энергонасыщенных материалов и изделий на выпуск конверсионной продукции; навыками безопасной работы при расснаряжении изделий

знать:

- сырьевую базу промышленного производства энергонасыщенных материалов и изделий, методы получения, свойств и показателей качества исходных продуктов; методы управления действующими технологическими процессами получения индивидуальных и смесевых взрывчатых веществ, принципов создания энергонасыщенных материалов, принципы прогнозирования и регулирования основных эксплуатационных свойств при проектировании действующих и новых технологий новых взрывчатых материалов и изделий
- специфику анализа энергонасыщенных материалов, назначение и принципы работы современной аппаратуры, применяемой при анализе энергонасыщенных материалов
- физико-химические, взрывчатые и физико-механические свойства индивидуальных и смесевых взрывчатых материалов и изделий
- современные методы исследований, стандартных и сертификационных испытаний индивидуальных и смесевых взрывчатых материалов и изделий на их основе

уметь:

- определять параметры технологических процессов получения, и их влияние на свойства исходных компонентов индивидуальных и смесевых взрывчатых материалов
- применять современные методы исследований, программы испытаний индивидуальных и смесевых взрывчатых материалов
- синтезировать индивидуальные и смесевые взрывчатые материалы и изделия на их основ
- применять современных методы исследований, разрабатывать программы испытаний индивидуальных и смесевых взрывчатых материалов

владеть:

- навыками управления и контроля технологическими процессами получения исходных компонентов индивидуальных и смесевых взрывчатых материалов, навыками прогнозирования и регулирования технологических параметров, основанных на знании эксплуатационных свойств, за счет технологических параметров, эксплуатационных свойств исходных компонентов индивидуальных и смесевых взрывчатых материалов и изделий на их основе.
- Владеет навыками исследования физико-химических, взрывчатых и физикомеханических свойств синтезированных индивидуальных и смесевых взрывчатых материалов и изделий на их основе

4. Время проведения производственной практики

Производственная (технологическая (проектно-технологическая)) практика проводится в семестре 8 на 4 курсе. Объем практики составляет 6 з.е., 216 часов – 4 недели

5. Содержание практики

Производственная (технологическая (проектно-технологическая)) практика организационно подразделяется на следующие этапы:

- 1) подготовительный этап,
- 2) основной этап,
- 3) заключительный этап, в том числе подготовки отчета по практике

Перед началом прохождения производственной практики происходит распределение студентов по ее конкретным базам. Базами практики являются промышленные предприятия различных отраслей промышленности.

Э	тап	Краткое содержание	Количес
			тво часов
П	Іодготовительный	Получение индивидуального задания на	12
		практику. Прохождение инструктажа по охране	
		труда и технике безопасности.	
O	основной этап	Ознакомление с научно-технической и	150
		патентной литературой по теме проводимого	
		исследования и подготовка к написанию	
		аналитического обзора; изучение	
		соответствующего технологического оснащения;	
		создание соответствующих технологических	
		схем; анализ и освоение основных существующих	
		современных компьютерных и информационных	
		технологий применяемых в области обеспечения	
		экологической, производственной и	
		промышленной безопасности; структурирование	
		знания в области безопасности, используя	
		различные источники информации	
3	аключительный	Подготовка теоретического и	54
этап		практического материала по теме, определенной	
		руководителем практики и соответствующей	
		направлению научных интересов кафедры.	
		Патентный поиск по выбранной тематике.	
		Обработка материалов, экспериментальных	
		результатов Систематизация, обобщение всех	
		полученных данных, анализ экспериментальных	
		результатов, сбор литературного материала.	
		Подготовка отчета по практике. Оформление	
		отчета. Оформление полученных	
		экспериментальных и литературных данных.	
		Формулировка выводов, рекомендаций и	
		предложений по решению конкретных задач	

6. Формы отчетности по производственной практике

Аттестация по итогам производственной практики проводится в виде зачета с оценкой на основе составления и защиты отчета.

По итогам прохождения производственной (преддипломной) практики студент в течение последней недели практики подготавливает и представляет на кафедру ответственному по практике следующую отчетную документацию:

- индивидуальное задание на производственную практику (Приложение №1);
- отчет по производственной практике (Приложение № 2);
- дневник по преддипломной практике (Приложение № 3);
- отзыв о выполнении программы практики (Приложение № 4);
- путевку на прохождение практики (Приложение №5).

Требования к отчету по производственной практике

Отчет по преддипломной практике должен содержать следующие части.

1. Титульный лист установленного образца с подписью ответственного по практике или руководителя по практике от кафедры.

- 2. Задание на практику, выданное руководителем практики от кафедры и утвержденное заведующим выпускающей кафедрой.
 - 3. Содержание отражает перечень тем и вопросов, содержащихся в отчете.
 - 4. Введение определяет цели, задачи и направления темы.
- 5. Основная часть описываются цели и задачи, основные перспективные направления, а также виды, структуру и объем выполняемых работ. Также в этой части работы студент должен осветить вопросы, входящие в программу преддипломной практики.

Индивидуальное задание – включает в себя полное развернутое рассмотрение и практическое применение задач, поставленных руководителем практики от кафедры.

- 6. Заключение содержит основные выводы и результаты, итоги проделанной работы.
- 7. Литература список литературы, оформленный в алфавитном порядке (в соответствии с ГОСТ 7.1-2003).

Рекомендуемый объем отчета -15-20 страниц машинописного текста (без приложений). В отчет могут быть включены приложения, объемом не более 20 страниц, которые не входят в общее количество страниц отчета. Отчет должен быть иллюстрирован таблицами, графиками, схемами и т.п. Отчет по практике оформляется в соответствии с требованиями ГОСТ 2.105-95.

Отчет по практике оформляется на листах формата А4. Текст излагается грамотно, четко и логически последовательно. Работа выполняется на компьютере шрифтом TimesNewRoman, размер 14 пунктов, междустрочный интервал - 1,5, отступ красной строки 1 см; Текст делят на разделы, подразделы, пункты, пронумерованные арабскими цифрами; разделы - 1,2,3,...подразделы - 1.1., 2.1., 3.1.,...пункты — 1.1.1.,2.1.2.,3.1.1.... и т.п. Каждый раздел следует начинать с нового листа. Введение и заключение не нумеруют. Страницы отчета по практике проставляют арабскими цифрами в правом верхнем углу, включая в общую нумерацию титульный лист, таблицы, рисунки. Таблицы, рисунки, формулы нумеруют последовательно арабскими цифрами в пределах раздела (или сквозной нумерацией по всему отчету).

Ссылки по тексту и список использованной литературы оформляют согласно ГОСТ 7.0.100-2018.

Страницы работы должны иметь поля: левое, правое, верхнее и нижнее. Размеры полей: верхнее и нижнее – 2 см, левое – 3 см, правое – 1,5 см. Все страницы нумеруются, начиная с титульного листа, номер страницы проставляется посередине верхнего поля (на титульном листе номер не проставляется). Каждая глава работы начинается с новой страницы. Заголовки глав оформляются полужирным шрифтом размером 16 пунктов с выравниванием по центру без отступа красной строки, заголовки подразделов пишутся строчными буквами полужирным шрифтом размером 14 пунктов. Переносы слов в заголовках не допускаются.

7. Промежуточная аттестация обучающихся по производственной (технологической (проектно-технологической)) практике

Производственная практика (преддипломная) проводится в соответствии с учебным планом и аттестуются преподавателем, ответственным за практику по системе дифференцированного зачета.

Срок аттестации: последний рабочий день недели, завершающий практику.

Для оценки используется рейтинговая системы оценки знаний, обучающихся на основании «Положения о балльно-рейтинговой системе оценки знаний обучающихся и обеспечения качества учебного процесса» (Утверждено решением Ученого совета ФГБОУ ВО «КНИТУ», протокол № 7 от 04.09.2017)

Дифференцированный зачет по производственной (преддипломной) практике выставляется в соответствии с семестровым рейтинговым баллом по 100-бальной шкале. Для

получения дифференцированного зачета семестровый балл должен быть выше минимального (от 60 до 100), при этом вводится следующая шкала перевода 100-бальной шкалы в 4-х бальную:

- от 87 до 100 баллов «отлично»
- от 74 до 86 баллов «хорошо»
- от 60 до 73 баллов «удовлетворительно»
- 60 и менее баллов «неудовлетворительно».

На основании отчетной документации, сданной обучающимся на кафедру по окончании практики, преподаватель,-ответственный по практике принимает решение о допуске обучающегося к защите отчета по практике.

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

8. Учебно-методическое и информационное обеспечение производственной (преддипломной) практики

При прохождении производственной (преддипломной) практики в качестве основных источников информации рекомендуется использовать следующую литературу:

8.1 Основные источники информации

	очники информации
Основные источники информации	Кол-во экз.
1. Основы научных исследований [Электронный	ЭБС «Консультант студента»
ресурс]: Учебное пособие / Кожухар В.М М.:	http://www.studentlibrary.ru/book/ISBN978
Дашков и К, 2012	<u>5394017117.html</u>
	Доступ из любой точки интернета после
	регистрации с IP- адресов КНИТУ.129
2. Основы научных исследований. Организация и	70 экз. в УНИЦ КНИТУ
планирование эксперимента [Электронный	
ресурс]: учеб. пособие / Казан. нац. исслед.	
технол. ун-т; Р.Г. Сафин, А.И. Иванов, Н.Ф.	
Тимербаев. –Казань: КНИТУ, 2013 –156 с.	
3. Шарнин, Г. П. Фаляхов И.Ф Химия	158 экз. в УНИЦ КНИТУ
энергоемких соединений: учеб. пособие для студ.	
вузов, обуч. по напр. "Хим. технология	
энергонасыщен. материалов и изделий". Кн.1:	
Нитропроизводные ароматических и	
алифатических углеводородов / Г.П. Шарнин,	
И.Ф. Фаляхов; Казан. гос. технол. ун-т.—	
Казань, 2009. — 352 с.	
4. Бочкарев, В.В. Оптимизация химико-	ЭБС «Юрайт»:
технологических процессов: учебное пособие /	https://www.biblio-
В.В. Бочкарев. М.: Издательство Юрайт, 2016	online.ru/viewer/B8E6110B-4AEB-4B30-
263 c.	B27A-06FB9EB8A7A3#page/1
	Доступ из любой точки интернета после
	регистрации с IP-адресов КНИТУ
6. Основы проектирования химических	ЭБС «Лань»
производств и оборудования: учебник / В.И.	https://e.lanbook.com/reader/book/45151/#1
Косинцев [и др.]; под ред. А.И. Михайличенко;	Доступ из любой точки интернета после
Томский политехнический университет. – 2-е	регистрации с ір-адресов КНИТУ
изд. – Томск: Изд-во Томского политехнического	
университета, 2013. – 395 с.	
7. Экономика предприятия: учебник	ЭБС КнигаФонд
Выварец А.Д. Юнити-Дана 2012 г. 543 страницы	http://www.knigafund.ru/books/172874
	Доступ из любой точки Интернета после
	регистрации с ІР-адресов КНИТУ

Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

inteparypy.	
1. Самуилов, Я.Д. Реакционная способность	68 в УНИЦ КНИТУ
органических соединений: учеб. пособие /	
Я.Д.Самуилов, Е.Н. Черезова; Казан. гос. технол.	
ун-т Казань, 2010. – 418 с.	
2. Буданов, В.В. Химическая кинетика: учебное	ЭБС «Лань»
пособие / В.В. Буданов, О.В. Лефедова; Иван.	https://e.lanbook.com/reader/book/4527/#1
гос. химтехнол. ун-т. – Иваново, 2011177 с.	Доступ из любой точки интернета после

	регистрации с ІР-адресов КНИТУ
3. Шарнин, Г. П. Фаляхов И.Ф.Введение в	
технологию энергонасыщенных материалов :	
учеб. пособие для студ. вузов, обуч. по направл.	
подготовки дипломир. спец-тов "Хим. технол.	186 в УНИЦ КНИТУ
энергонасыщ. материалов и изделий" Казан. гос.	
технол. ун-т .— Казань : Изд-во КГТУ, 2005 .—	
391 c.	

Электронные источники информации

При прохождении производственной (преддипломной) практики в качестве электронных источников информации рекомендуется использовать следующие источники:

Рекомендуется использование следующих информационных источников:

- 1. Электронный каталог УНИЦ ФГБО ВО «КНИТУ»-Режим доступа http://ruslan.kstu.ru
- 2. Научная электронная библиотека (НЭБ)-Режим доступа http://ft.kstu.ru/ft/
- 3. ЭБС «Юрайт»-Режим доступа: http://www.biblio-online.ru
- 4. ЭБС «Лань»-Режим доступа http://e.lanbook.com/books/
- 5. ЭБС «КнигаФонд»-Режим доступа:www.knigafund.ru
- 6. ЭБС «БиблиоТех»-Режим доступа: http://kstu.bibliotech.ru
- 7. ЭБС «РУКОНТ»-Режим доступа: http://rucont.ru
- 8. ЭБС «IPRbooks»-Режим доступа: http://www.iprbookshop.ru
- 9. ЭБС «Znanium.com»-Режим доступа: http://znanium.com/
- 10. ЭБС «Консультант студента» –Режим доступа: http://www.studentlibrary.ru
- 11. ЭБС Библиокомплектатор Режим доступа: http://www/bibliocomplectator.ru
- 12. Библиотека патентов http://www.freepatent.ru

Согласовано:

УНИЦ КНИТУ

9. Материально-техническое обеспечение практики

При прохождении производственной практики на промышленных предприятиях различных отраслей промышленности, обучающемуся предоставляются оборудование, технические средства обучения, в объеме, позволяющем выполнить определенные виды работ, связанные с прохождением практики и последующей защитой проекта в соответствии с договором о практической подготовке.

10. Образовательные технологии

Количество занятий (в часах), проводимых в интерактивных формах для данной практики, следует взять из учебного плана по подготовке для данной специальности

Основные интерактивные формы проведения учебных занятий:

- творческие задания;
- работа в малых группах;
- дискуссия и т.д.