Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор но УР
А.В. Бурмистров
2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.Б.22 Термодинамика

Направление нодготовки 15.03.02 Технологические машины и оборудование

		дготовки направления
Квалификация (степе	нь) выпускника	бакалавр
Форма обучения	очная	
Институт, факультет	ИХНМ (МФ,	ТАППИ, (МПІТФ) ДМПІТИ, (ОТМСФ
(ФПИ)		
Кафедра-разработчик	рабочей програм	имы
Курс, семестр	2 курс, 4 семестр)

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия		
Семинарские занятия		
Лабораторные занятия	36	1
Самостоятельная работа	54	1,5
Форма аттестации	Зачет	
Всего	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1170 от 20.10.2015 года но направлению 15.03.02 «Технологические машины и оборудование» для всех профилей подготовки направления на основании учебных планов набора обучающихся 2018 года.

Разработчик программы:

ассистент каф. ТОТ

San

А.Р. Габитова

Зав. кафедрой, проф.

opulas

Ф.М. Гумеров

СОГЛАСОВАНО

Ответственный за направление 15.03.02, профессор

С.И. Поникаров

УТВЕРЖДЕНО

Протокол заседания методической комиссии механического факультета от 03.09. 2018. N_{\odot} 7

Председатель комиссии, доцент

S. S.

А.В. Гаврилов

Начальник УМЦ, доцент

<u> Л.А. Китаева</u>

1. Цели освоения дисциплины

Целями освоения дисциплины «Термодинамика» являются:

- а) формирование знаний о методах преобразования и использования теплоты, а также принципы действия и конструктивные особенности тепловых и холодильных машин, тепло- и парогенераторов.
- б) подготовка специалистов, владеющих навыками грамотной эксплуатации современного теплового оборудования при максимальной экономии топлива и материалов, интенсификация и оптимизация современных энерготехнологических процессов
- в) на базе термодинамики и теплопередачи с привлечением некоторых других фундаментальных дисциплин осуществляется расчет и проектирование всех тепловых двигателей паровых и газовых турбин, реактивных и ракетных двигателей внутреннего сгорания, а также всевозможного технологического оборудования, как-то: холодильных машин, сушильных, сжижительных, энерготехнологических и других установок.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Термодинамика» относится к обязательным дисциплинам *базовой* части ОП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины <u>«Термодинамика»</u> *бакалавр* по направлению подготовки 15.03.02 «Технологические машины и оборудование» должен освоить материал предшествующих дисциплин:

- а) Математика
- б) Физика

Дисциплина <u>«Термодинамика»</u> является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Управление техническими системами,
- б) Теплообмен.

Знания, полученные при изучении дисциплины <u>«Термодинамика»</u> могут быть использованы при выполнении *выпускных квалификационных работ* по направлению подготовки 15.03.02 «Технологические машины и оборудование».

3. Компетенции обучающегося, формируемые в результате освоения дисииплины

1. (ПК-2) умением моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования,

готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов;

2. (ПК-3) способностью принимать участие в работах по составлению научных отчетов по выполненному заданию и внедрять результаты исследований и разработок в области технологических машинах и оборудования

В результате освоения дисциплины обучающийся должен:

- 1) Знать: а) закономерности основных термодинамических процессов с идеальным и реальным газами;
- б) схемы и циклы тепловых машин и холодильных установок, их КПД
- в) принципы оптимизации энерготехнологических схем: принцип «многоступенчатости». Принципы, связанные с входом и выходом энергоносителей. Принципы регенерации и интеграции;
- г) основные законы переноса тепла и массы;
- д) методы расчета теплообменных аппаратов.
- 2) Уметь: а) определять термодинамические параметры и теплофизические свойства различных газов, водяного пара, хладоагентов и других веществ;
- б) пользоваться первым и вторым законами термодинамики;
- в) пользоваться справочной литературой, диаграммами.
- 3) Владеть: а) термодинамическими методами повышения эффективности использования подводимой энергии;
- б) основами расчета процессов тепломассопереноса в элементах теплотехнического и теплотехнологического оборудования.

4. Структура и содержание дисциплины «Термодинамика»

Общая трудоемкость дисциплины составляет <u>3</u> зачетные единицы, <u>108</u> часов.

Nº	Раздел дисциплины	Семестр		ы учебно (в часа	Оценочные средства для проведения промежуточной		
п/п		Сем	Лекция	Семинар (Практи- ческое занятие)	Лаборато рные работы	CPC	аттестации по разделам
1	Тема 1. Основные понятия и определения						Тестирование
	термодинамики.	4	1	-	-	2	
2	Тема 2. Первый закон термодинамики.	4	1,5	-	10	3	Защита лабораторных работ, тестирование
3	Тема 3 Основные термодинамические процессы с	4	1,5	_	-	2	Тестирование
	процессы с идеальным газом.	•	1,3	_		<i>_</i>	
4	Тема 4. Второй закон	4	2	-	-	2	Тестирование
5	термодинамики. Тема 5. Реальные газы.	4	2	-	8	7	Защита лабораторных работ, тестирование
6	Тема 6. Виды теплообмена. Теория конвективного	4	2		10	2	Защита лабораторных работ, тестирование
7	переноса. Тема 7. Стационарная теплопроводность и теплопередача в твердых телах. Конвективный тепломассо-обмен.	4	2 2	-	-	4	Тестирование
8	Тема 8. Теория подобия для расчета процессов переноса.	4	2	-	-	14	Защита лабораторных работ, тестирование
9	Тема 9. Теплообмен излучением.	4	1	-	8	4	Контрольная работа
10	Тема 10.		3	_			Тестирование по
10	1 CM a 1U.		<u>3</u>	_	-		тестирование 110

Теплообменные аппараты.	4				14	темам 1-10, защита расчетно-графической работы
ИТОГО		18	-	36	54	Зачет

5. *Содержание лекционных занятий по темам* с указанием формируемых компетенций.

	Раздел	Ча	Тема лекционного	Краткое содержание	Формир
Π /	дисциплин ы	сы	занятия		уемые компете
' П	ы				нции
1	Тема 1. Основные понятия и определени я термодинам ики.	1	Термодинамическая система. Основные параметры состояния. Равновесное и неравновесное состояние.	Уравнение состояния идеального газа. Термодинамические процессы: равновесные и неравновесные, обратимые и необратимые. Изображение термодинамических процессов в ру-диаграмме	ПК-2, ПК-3
2	Тема 2. Первый закон термодинам ики.	1,5	Первый закон термодинамики. Теплота и работа как формы передачи энергии. Понятие о внутренней энергии и энтальпии.	Сущность первого закона термодинамики, формулировки и аналитические выражения. Работа проталкивания. Техническая и располагаемая работа. Теплоемкость газов Массовая, объемная и молярная теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям. Смеси рабочих тел. Способы задания состава смеси, соотношения между массовыми и объемными долями. Вычисление параметров состояния смеси, определение кажущейся молекулярной массы и газовой постоянной смеси, определение парциальных давлений компонентов.	ПК-3
3	Тема 3 Основные термодинам ические процессы с идеальным газом.	1,5	Изохорный, изобарный, изотермический и адиабатный процессы их анализ.	Изохорный, изобарный, изотермический и адиабатный процессы их анализ. Изображение в координатах Рv и ТS. Политропные процессы. Основные характеристики политропных процессов. Обобщающее значение политропного процесса.	ПК-2, ПК-3
4	Тема 4. Второй закон	2	Сущность второго закона термодинамики.	Прямые и обратные циклы. Термодинамические КПД и холодильный коэффициент. Циклы	ПК-2, ПК-3

	термодинам ики.		Основные формулировки второго закона термодинамики. Термодинамические циклы тепловых машин.	Карно и их свойства. Аналитическое выражение второго закона термодинамики. (первый и второй интегралы Клаузиуса) Изменение энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии изолированной системы Философское и статистическое толкования второго закона термодинамики. Формула Больцмана Понятие об эксергии, эксергетический баланс и эксергетический к.п.д	
5	Тема 5.Реальные газы.	2	Свойства реальных газов Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	Процессы парообразования в PV и TS координатах. Водяной пар Параметры кипящей жидкости, сухого насыщенного пара, влажного насыщенного пара и перегретого пара. Уравнение Клапейрона-Клаузиуса. Анализ процессов в реальных газах с помощью таблицы ТСВП и диаграмм hs и lqp-h	ПК-2, ПК-3
6	Тема б. Виды теплообмен а. Теория конвективн ого переноса.	2	Основные законы переноса теплоты теплопроводностью, конвективным теплообменом, тепловым излучением.	Дифференциальные уравнения переноса теплоты и массы. Теория конвективного переноса. Ламинарное и турбулентное течение.	ПК-2
7	Тема 7. Стационарн ая теплопрово дность и теплоперед ача в твердых телах. Конвективн ый тепломассо обмен.	2	Теплообмен через оребренные поверхности. Нестационарный теплообмен.	Теплопроводность плоской однослойной и многослойной стенки, однослойной и многослойной цилиндрической стенки. Конвективный тепломассообмен: при внешнем обтекании тел; при внутреннем течении в трубах и каналах; при свободной конвекции; при кипении.	ПК-2, ПК-3
8	Тема 8. Теория подобия для расчета процессов переноса.	2	Критериальные уравнения. Уравнения пограничного слоя.	Теоремы подобия. Дифференциальное уравнение движения для двух подобных процессов в относительных величинах. Метод масштабных преобразований	ПК-2
9	Тема 9.	1	Законы теплового	Законы Планка, смещение Вина,	ПК-2,

	Теплообмен излучением.		излучения	Стефана-Больцмана, Кирхгофа. Спектры излучения. Сложный теплообмен	ПК-3
1 0	Тема 10. Теплообмен ные аппараты.	3	Теплообменные аппараты. Теплопередача в рекуперативных и регенеративных теплообменниках.	Элементы классификации теплообменных аппаратов, основы расчета. Средний логарифмический температурный напор.	ПК-2, ПК-3

6. Содержание семинарских, практических занятий (лабораторного практикума) — не предусмотрено учебным планом

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Учебным планом предусмотрено проведение лабораторных занятий по дисциплине «**Термодинамика**» для студентов очной формы обучения в объеме 36 часов.

Цель проведения лабораторных занятий – усвоение лекционного материала, а также

выработка студентами умений, связанных с обработкой экспериментальных данных.

№ п/п	Раздел дисциплины	часы	Наименование лабораторной работы	Краткое содержание	Форми руемы е компе тенци и
1	Тема 2. Первый закон термодинами ки.	10	Исследование процессов с влажным воздухом	Процессы парообразования в PV и TS координатах. Водяной пар Параметры кипящей жидкости, сухого насыщенного пара, влажного насыщенного пара и перегретого пара.	ПК-2
2	Тема 5.Реальные газы.	8	Измерение теплоемкости воздуха	Теплоемкость газов Массовая, объемная и молярная теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям.	ПК-2, ПК-3
3	Тема 6. Виды теплообмена. Теория конвективно го переноса.	10	Исследование PV - диаграммы углекислого газа (опыт Эндрюса)	Свойства реальных газов Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	ПК-3
4	Тема 9. Теплообмен излучением.	8	Исследование кривой насыщения водяного пара	Уравнение Клапейрона- Клаузиуса. Анализ процессов в реальных газах с помощью таблицы ТСВП	ПК-2, ПК-3

Лабораторные занятия проводятся в помещениях учебных и научных лабораторий кафедры «Теоретические основы теплотехники» с использованием лабораторных и исследовательских экспериментальных установок и стендов.

8. Самостоятельная работа бакалавра

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Формируе мые компетенц
1	Изучение теоретического (лекционного) материала в течение семестра	12	Проработка теоретического материала	ии ПК-2, ПК-3
2	Подготовка к лабораторным работам оформление отчетов	10	Проработка теоретического материала, расчет лабораторных работ	ПК-2, ПК-3
3	Выполнение расчетной работы на тему: «Расчет цикла тепловых двигателей с газообразным рабочим телом»	32	Выполнение расчетно- графического задания, оформление отчета	ПК-2, ПК-3

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «**Термодинамика**» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

При изучении указанной дисциплины предусматривается:

- проведение тестирования, сдача лабораторных работ, контрольных задач и расчетнографических работ. За эти виды работ студент может получить количество баллов – от 36 до 60 (см. таблицу). В результате максимальный текущий рейтинг составит 60 баллов. За экзамен студент может получить максимальное количество баллов – 40. В итоге максимальный рейтинг за изучение дисциплины составляет 100 баллов.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	4	32	52
Тестирование	1	3	5
Расчетно-графическая работа	1	16	26
Контрольная работа	1	9	17
Итого:		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины «Термодинамика»

11.1 Основная литература

При изучении дисциплины **«Термодинамика»** в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Нащокин В.В. Техническая термодинамика и	988 экз. в УНИЦ КНИТУ
теплопередача [Учебники]: учеб. пособие для	
неэнергет. спец. вузов / В.В. Нащокин. — 4-е изд.,	
стереотип. — М.: Аз-book, 2008. — 470 с. : ил.,	
табл.	
2. Дьяконов В.Г. Основы теплопередачи и	157 экз. в УНИЦ КНИТУ
массообмена [Учебники]: учеб. пособие / В.Г.	
Дьяконов, О.А. Лонщаков; Казанский нац. исслед.	
технол. ун-т .— Казань : Изд-во КНИТУ, 2015 .—	
242, [2] с. : ил.	
3. Амирханов Д.Г. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс]: учеб. пособие / Казанский	КНИТУ
нац. исслед. технол. ун-т; Д.Г. Амирханов, Р.Д.	http://ft.kstu.ru/ft/Amirchanov-
Амирханов. — Казань: КНИТУ, 2014. — 264 с.: ил.	tekhnicheskaya.pdf
	Доступ с ІР адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Курбангалеев М.С. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс]: методические указания к	КНИТУ
лабораторным работам / М.С. Курбангалеев, А.А.	http://ft.kstu.ru/ft/Kurbangaleev-
Мухамадиев, И.Х. Хайруллин; Казан. нац. исслед.	tekhnicheskaya_termodinamika_MU.pdf
технол. ун-т .— Казань : Изд-во КНИТУ, 2014 .—	Доступ с ІР адресов КНИТУ
60 с. : ил.	
2. Нарышкин Д. Г. Химическая термодинамика с	ЭБС «znanium.com»
Mathcad. Расчетные задачи: Учебное пособие. — 1	http://znanium.com/go.php?id=503896
.— Москва ; Москва : Издательский Центр РИОР :	
ООО "Научно-издательский центр ИНФРА-М",	после регистрации с ІР-адресов КНИТУ
2016 .— 199 c.	
3. Гинзбург В.Л. Сборник задач по общему курсу	
физики. Книга II. Термодинамика и молекулярная	
физика / Гинзбург В.Л.; Левин Л.М.; Сивухин	
Д.В.; Яковлев И.А. — Моском: Физматлит, 2006	
.— Сборник задач по общему курсу физики. Книга	· · · · · ·
II. Термодинамика и молекулярная физика	1 1
[Электронный ресурс] / Гинзбург В.Л., Левин Л.М.,	
Сивухин Д. В., Яковлев И.А.; Под ред. Д. В.	

Сивухина.	- 5-e	изд.,	стер	M. :	ФИЗМАТ.	лит,		
2006.								

11.3 Электронные источники информации

При изучении дисциплины «Термодинамика» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Электронная библиотека УНИЦ КНИТУ Режим доступа: http://ft.kstu.ru/ft/
- 3. ЭБС «Консультант студента» Режим доступа: http://www.studentlibrary.ru
- 4. ЭБС «znanium.com» Режим доступа: www.znanium.com

Согласовано:

Зав. сектором ОКУФ

12. Материально-техническое обеспечение дисциплины (модуля).

На кафедре теоретических основ теплотехники в учебном процессе при выполнении лабораторных работ и практических занятий используется современная вычислительная техника. Компьютерный класс укомплектован необходимым количеством персональных компьютеров РС АТ и программным обеспечением. В качестве материально-технического обеспечения дисциплины используются мультимедийные средства; наборы слайдов и кинофильмов; демонстрационные приборы; при необходимости — средства мониторинга и т.д.

1. Лекционные занятия:

а. комплект электронных презентаций, слайдов, видеофильмов

2. Лабораторные работы:

- а. лаборатория A-23 оснащена лабораторным оборудованием для проведения работ: исследование процессов с влажным воздухом, измерение теплоемкости воздуха, исследование PV диаграммы углекислого газа (опыт Эндрюса), исследование кривой насыщения водяного пара.
- b. лаборатория A-35 (Компьютерный класс) оснащена 8 компьютерами,
- с. шаблоны расчетов и отчетов по лабораторным работам представлены в электронном виде,
- d. результаты расчетов оформляются на принтере.

13. Образовательные технологии

Удельный вес занятий, проводимых в интерактивной форме обучения составляет 10 часов. Лекционные занятия проводятся при помощи проектора в виде презентаций и слайдов.

Занятия, проводимые в интерактивной форме обучения составляют 2 часа лекций и 8 часов лабораторных работ.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине «Термодинамика» (наименование дисциплины)

По направлению 15.03.02 « Технологические машины и оборудование»» (шифр) (название) для профиля /программы/специализации/направленности «Все профили подготовки направления» для набора обучающихся 2019 форма обучения очная

пересмотрена на заседании кафедры <u>ТОТ</u> (наименование кафедры)

No	Дата	Наличие	Наличие	Подпись	Подпись	Подпись
п/п	переутверждения	изменений	изменений в	разработ-	заведующего	начальника
	РП (протокол		списке	чика РП	кафедрой	УМЦ
	заседания		литературы			
	кафедры № от			Габитова	Гумеров Ф.М.	Китаева Л.А.
	20)			A.P.		1/2
	№ 14 от	есть*	Нет	6	Much	Milling.
	27.06.2019			Kun	0	Minung
	W.					
	P.					

^{*} Пункт Профессиональные базы данных и информационные справочные системы

http://www.elibrary.ru

Внесены дополнения в пункт Материально-техническое обеспечение дисциплины (модуля)

Лицензированное свободно распространяемое программное обеспечение, используемое в учебном процессе при освоение дисциплины.....(согласно требованию $\Phi \Gamma OC\ BO\ n.\ 7.3.2.$).

MS Office