Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР А.В. Бурмистров

× 01 »

07 2019 г.

РАБОЧАЯ ПРОГРАММА

Б1.Б.18 «Механика жидкости и газа»

Направление подготовки 15.03.02 «Технологи	<u>ические машины и оборудование»</u>				
Профиль подготовки Машины и аппараты нефтегазопереработки					
Квалификация (степень) выпускника	бакалавр				
Форма обучения	заочная				
Институт, факультет КМИЦ «Новые технолог	<u>ЧИИ»</u>				
Кафедра-разработчик рабочей программы	КМИЦ «Новые технологии»				
Курс, семестр $\underline{\text{курс}} - 3$, семестр $\underline{-5-6}$					

	Часы	Зачетные единицы
Лекции	2	0,11
Практические занятия	-	-
Семинарские занятия	-	-
Лабораторные занятия	6	0,16
Самостоятельная работа	127	3,5
Форма аттестации	Экзамен, 9	0,25
Всего	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1170 от направлению 15.03.02 20.10.2015 ПО «Технологические машины «Машины оборудование», профиль подготовки И аппараты нефтегазопереработки», основании учебного набора плана, ДЛЯ обучающихся 2019 года.

Примерная программа по дисциплине отсутствует.

Разработчик программы:
$\frac{m_{ospeccop}}{(\text{должность})}$ $\frac{Maxorx un A P}{(\Phi.И.О)}$
Рабочая программа рассмотрена и одобрена на заседании КМИЦ «Новые
технологии»,
протокол от « <u>7</u> » <u>06</u> 20 <u>/9</u> г. № <u>6</u> .
Директор, профессор (должность) (подпись) <u>А.Ф. Махоткин</u> (Ф.И.О)
УТВЕРЖДЕНО
Протокол заседания методической комиссии КМИЦ «Новые технологии»
от « <u>07</u> » <u>06</u> 20 <u>/9</u> г. № <u>6</u>
Председатель комиссии, профессор (подпись) А.Ф. Махоткин (Ф.И.О)
Начальник УМЦ (должность) <u>Л. А. Китаева</u> (Ф.И.О)

1. Цели освоения дисциплины

Целью освоения дисциплины «Механика жидкости и газа» является:

- а) формирование знаний об основных законах механики жидких и газообразных сред, силах и напряжениях, возникающих в жидких средах, теории гидродинамического подобия;
- б) обучение способам применения измерительных приборов для определения характеристик потока жидкости, таких как давление, температура, расход, гидравлическое сопротивление;
- в) раскрытие сущности процессов, происходящих при движении жидких сред в различных каналах, а также при истечении жидкостей из отверстий.

2. Место дисциплины (модуля) в структуре образовательной программы (ОП)

Дисциплина Б1.Б.18 «Механика жидкости и газа» относится к базовым дисциплинам ООП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» набор специальных знаний и компетенций, необходимых для выполнения эксплуатационной, проектно-технологической, экспериментально-исследовательской и организационно-управленческой деятельности.

Для успешного освоения дисциплины бакалавр по направлению подготовки 15.03.02 «Технологические машины и оборудования» должен освоить материалы предшествующих дисциплин:

- а) Б1.Б.5 Математика;
- б) Б1.Б.6 Физика;

Дисциплина Б1.Б.18 «Механика жидкости и газа» является предшествующей и необходима бакалаврам по направлению подготовки 15.03.02 «Технологические машины и оборудование» для успешного усвоения последующих дисциплин:

- а) Б1.В.ОД.11 «Машины и аппараты нефтегазопереработки и нефтехимии»;
- б) Б1.В.ОД.15 «Ремонт и монтаж оборудования нефтегазопереработки».

Знания, полученные при изучении дисциплины «Механика жидкости и газа», могут быть использованы при прохождении преддипломной практики и выполнении выпускной квалификационной работы по направлению подготовки 15.03.02 «Технологические машины и оборудование».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- ОПК-2 владение достаточными для профессиональной деятельности навыками работы с персональным компьютером;
- ПК-2 умение моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов.

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) режимы течения сред, пограничные слои;
- б) уравнения Эйлера, Бернулли, Навье-Стокса;
- в) условия подобия гидродинамических процессов.

- 2) Уметь:
- а) проводить расчеты и экспериментально определять характеристики течения жидкостей в элементах инженерных систем.
 - 3) Владеть:
 - а) методами расчета жидких и газовых потоков;
- б) приемами постановки инженерных задач для решения их коллективом специалистов различных направлений.

4. Структура и содержание дисциплины «Механика жидкости и газа».

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часов.

№ π/	Раздел дисциплины	Kypc	Виды учебной ј (в часах)		-		Информационные и другие образовательные технологии, используемые при осуществлении образовтельного процесса	Оценочные средства для проведения промежуточн ой аттестации
П		Ķ	Лекци я	Семинар (Практическое занятие)	ые работ	СРС		по разделам
1	Гидростатика	3	1		3	63	При проведении практических занятий используется проектор и ноутбук	лабораторн ая работа Реферат, экзамен
2	Кинематика	3	1		3	64	При проведении практических занятий используется проектор и ноутбук	лабораторн ая работа Реферат, экзамен
	ИТОГО:		2		6	127		Экзамен (9)

5. Содержание лекционных занятий по темам с указанием используемых инновационных образовательных технологий.

№	Раздел	Час	Тема лекционного занятия	Краткое содержание	Формируемые
п/п	дисциплины	Ы			компетенции
1	Гидростатика	1	Гидростатика	Основные физические свойства жидкостей и газов. Режимы течения. Уравнения Эйлера и их общие интегралы. Основная формула гидростатики.	ОПК-2, ПК-2
2	Кинематика	1	Кинематика	Уравнение неразрывности. Уравнение движение Эйлера. Уравнение Бернулли. Уравнения Навье-Стокса.	ОПК-2, ПК-2

6. Содержание практических занятий с указанием используемых инновационных образовательных технологий.

Учебным планом по направлению подготовки 15.03.02 «<u>Технологические машины и оборудование</u>» не предусмотрено проведение практических занятий по дисциплине «Механика жидкости и газа».

7. Содержание лабораторных занятий (если предусмотрено учебным планом).

№	Раздел	Час	Тема лабораторного занятия	Краткое содержание	Формируемые
п/п	дисциплины	Ы			компетенции

1	Гидростатика		Гидростатика	Основные физ	вические	ОПК-2, ПК-2
				свойства жидкостей	и газов.	
		2		Режимы течения. Ур	авнения	
		3		Эйлера и их	общие	
				интегралы. О	сновная	
				формула гидростатики	И.	
2	Кинематика		Кинематика	Уравнение неразрь	ывности.	ОПК-2, ПК-2
		2		Уравнение движение	Эйлера.	·
		3		Уравнение Бе	ернулли.	
				Уравнения Навье-Сто	кса.	

8. Самостоятельная работа бакалавра

Темы, выносимые на самостоятельную работу	Часы	Форма СРС*	Формируемые компетенции
Гидростатика	63	Изучение базовой и дополнительной литературы, конспектирование изученных источников.	
Кинематика	64	Изучение базовой и дополнительной литературы, конспектирование изученных источников. Подготовка к тестированию и сдаче реферата	

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Основы проектирования» используется балльно-рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в Положении ФГБОУ ВО «КНИТУ» от 04.09.2017 "О балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса"

За все виды работ студент может получить максимальное количество баллов – 60. В результате максимальный текущий рейтинг составит 60 баллов. За экзамен студент может получить максимальное количество баллов – 40. В итоге максимальный рейтинг за изучение дисциплины составляет 100 баллов.

Показатель	Кол-во	min	max
Реферат	1	16×1=16	20×1=20
Лабораторная работа	2	10×2=20	20×2=40
Экзамен	1	24	40
Итого	60	100	

Пересчет итоговой суммы баллов за семестр, где предусмотрен экзамен, в традиционную и международную оценку

Оценка	Итоговая сумма баллов без	Оценка (ECTS)
	экзаменационной	
	составляющей	
5 (отлично)	57-60	А (отлично)
4 (хорошо)	54-56	В (очень хорошо)
	51-53	С (хорошо)

	48-50	D (удовлетворительно)
3 (удовлетворительно)	42-47	
	36-41	Е (посредственно)
2 (неудовлетворительно)	Ниже 36 баллов	F (неудовлетворительно)

По окончании семестра обучающийся, набравший менее 36 баллов, не допускается к экзамену и считается неуспевающим. В этом случае обучающийся в установленном в КНИТУ порядке обязан пересдать экзамен

10. Учебно-методическое и информационное обеспечение дисциплины (модуля) «Механика жидкости и газа»

10.1 Основная литература

При изучении дисциплины «Механика жидкости и газа» в качестве основных источников информации, рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
Андрижиевский, А. А. Механика жидкости и	ЭБС «IPR BOOKS»
газа: учебное пособие / А. А. Андрижиевский.	http://www.iprbookshop.ru/35498.html
 — Минск : Вышэйшая школа, 2014. — 207 с. 	доступ из любой точки интернет
	после регистрации ІР адресов КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
Алексеев, Г. В. Виртуальный лабораторный	ЭБС «IPR BOOKS»
практикум по курсу «Механика жидкости и	http://www.iprbookshop.ru/16895.html
газа»: учебное пособие / Г. В. Алексеев, И. И.	доступ из любой точки интернет
Бриденко. — Саратов: Вузовское образование,	после регистрации ІР адресов КНИТУ
2013. — 132 c. — ISBN 2227-8397.	_

10.3 Электронные источники информации

При изучении дисциплины «Механика жидкости и газа» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: https://ruslan.kstu.ru/
- 2. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины (модуля)

- В качестве материально-технического обеспечения дисциплины могут быть использованы мультимедийные средства.
 - а) комплект электронных презентаций/слайдов;
- б) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер);
 - в) мультимедийная техника: компьютер, проектор, экран. Программное обеспечение: 1. Microsoft Windows. 2. Microsoft Office. 3. Linux

13. Образовательные технологии

Удельный вес занятий по дисциплине «Механика жидкости и газа», проводимых в интерактивных формах, составляет (2 часа).

В случае возникновения вопросов при подготовке к выполнению лабораторных работ и сдаче отчета по ней вне аудиторных часов студент может обратиться к преподавателю удаленно по электронной почте.