Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

РАБОЧАЯ ПРОГРАММА

По дисциплине <u>Б1.В.ДВ.9.1 Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки</u>
Направление подготовки <u>15.03.02 Технологические машины и оборудование</u>

Профиль подготовки <u>Машины и аппараты нефтегазопереработки</u>
Квалификация (степень) выпускника <u>бакалавр</u>

Форма обучения _________ заочная

Институт, факультет <u>Казанский межвузовский инженерный центр</u> «Новые технологии» (КМИЦ «Новые технологии»)

Кафедра-разработчик рабочей программы <u>КМИЦ «Новые технологии»</u> Курс, семестр <u>курс</u> – 4, семестр – 7

	Часы	Зачетные единицы
Лекции	4	0,11
Практические занятия	-	-
Семинарские занятия	-	-
Лабораторные занятия	6	0,16
Самостоятельная работа	125	3,4
Форма аттестации	Экзамен (9)	0,25
Всего	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1170 от 20.10.2015 направлению 15.03.02 «Технологические ПО машины оборудование», профиль «Машины подготовки аппараты нефтегазопереработки», основании учебного плана, на набора для обучающихся 2019 года.

Примерная программа по дисциплине отсутствует.

Разработчик программы:		
	(подилсь)	В. И. Летров (Ф.И.О)
Рабочая программа расс технологии»,	мотрена и одобрена на за	аседании КМИЦ «Новые
протокол от « $\frac{7}{}$ »06	20 <u>19</u> г. № <u>6</u> .	
Директор, профессор (должность)	(подпись)	<u>А.Ф. Махоткин</u> (Ф.И.О)
УТВЕРЖДЕНО		
Протокол заседания метод от « / » <u> </u>	цической комиссии КМИЦ «I <u>9</u> г. № <u>6</u>	Новые технологии»
Председатель комиссии, пр (должность)	рофессор (подпись)	<u>А.Ф. Махоткин</u> (Ф.И.О)
Начальник УМЦ (должность)	(подпись)	<u>Л. А. Китаева</u> (Ф.И.О)

1. Цели освоения дисциплины

Целями освоения дисциплины Б1.В.ДВ.9.1 «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» являются:

- а) формирование знаний о теоретических основах переноса количества движения, теплоты, массы и их практических приложений в химической технологии;
- б) получение знаний об устройствах и работе основных аппаратов и машин, которые используются в химической технологии;
- в) приобретение умения проводить экспериментальные работы по процессам химической технологии и обобщать полученные результаты;
- г) формирование умений конструирования и расчета нового тепло-массообменного оборудования для процессов нефтегазопереработки;
- д) повышение качества инженерной подготовки путем освоения расчета основных машин и аппаратов, применяемых в химической отрасли;

2. Место дисциплины в структуре образовательной программы ОП

Дисциплина Б1.В.ДВ.9.1 «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» относится к вариативной части дисциплин по выбору ООП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» набор специальных знаний и компетенций, необходимых для выполнения проектно-конструкторской и производственно-технологической деятельности.

Для успешного освоения дисциплины_Б1.В.ДВ.9.1 «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» бакалавр по направлению подготовки 15.03.02 «Технологические машины и оборудование» должен освоить материал предшествующих дисциплин:

- а) Механика жидкости и газа (Б1.Б.18):
- б) Термодинамика (Б1.Б.22);
- в) Общая химическая технология (Б1.В.ОД.7);

Дисциплина «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Конструирование и расчет элементов оборудования (Б1.В.ОД.12);
- б) Математическое моделирование химико-технологических процессов (Б1.В.ДВ.5.2);
- в) Машины и аппараты нефтегазопереработки (Б1.В.ОД.13).

Знания, полученные при изучении дисциплины «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» могут быть использованы при прохождении преддипломной практики и выполнении выпускной квалификационной работы по направлению подготовки 15.03.02 «Технологические машины и оборудование» и профилю подготовки «Машины и аппараты нефтегазопереработки»

3. Компетенции обучающегося, формируемые в результате освоения дисциплины: Профессиональные компетенции (ПК):

- 1. ПК-9 умением применять методы контроля качества изделий и объектов в сфере профессиональной деятельности, проводить анализ причин нарушений технологических процессов и разрабатывать мероприятия по их предупреждению
- 2. ПК-13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) основные понятия тепло-массообменных процессов и оборудования в нефтегазо-переработки;
 - б) условия реализации технологического процесса;
 - в) аппаратное оформление технологических процессов;
 - г) основные принципы конструирования тепломассообменных аппаратов;
 - д) современные методы расчета узлов и деталей аппаратов.

2) Уметь:

- а) обосновывать выбор основных конструкционных материалов для массообменных аппаратов;
- б) обосновывать выбор тепло-массообменных аппаратов для технологических процессов в соответствии с регламентом;
 - в) выполнять основные механические расчеты тепломассообменных аппаратов;
 - г) составлять расчетную схему аппарата и проводить тепло-массообменные расчеты;

3) Владеть:

- а) методами расчета и конструирования основных аппаратов нефтегазопереработки;
- б) компьютерными программами по расчету технологического оборудования;
- в) основными понятиями и терминологией, принятыми в практике расчета тепло- массообменного оборудования;
- г) основными концепциями, объясняющими проблемы выбора аппаратов для технологических процессов;
 - д) навыками работы с учебной, научной и патентной литературой.

4. Структура и содержание дисциплины «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки».

Общая трудоемкость дисциплины составляет 4 зачетных единиц, 144 часа.

	Раздел дисци- плины		Видь	Виды учебной работы (в часах)		оты	Информационные и другие образовательные технологии, используемые при осуществлении образовательного процесса	Оценоч- ные сред- ства для проведе- ния про-
№ п/ п		Семестр	Лекция	Семинар (Практическое за- нятие)	Лабораторные работы	CPC	4	межуточ- ной атте- стации по разделам
1	Введение	6	2		-	7	Интерактивные лекции (презентации) с использованием программы MS PowerPoint, работа с текстовыми и раздаточными дидактическими материалами	Реферат, экзамен
2	Теоретические основы про- цессов химиче- ской техноло- гии	7	0,5		1	12	Интерактивные лекции (презентации) с использованием программы MS PowerPoint, работа с текстовыми и раздаточными дидактическими материалами, организация групповых дискуссий	Защита ла- бораторных работ, ре- ферат, эк- замен
3	Гидромехани- ческие процес- сы и аппараты	7	0,5		2	24	Интерактивные лекции (презентации) с использованием программы MS PowerPoint, работа с текстовыми и раздаточными дидактическими материалами, организация групповых дискуссий	Защита ла- бораторных работ, ре- ферат, эк- замен
4	Тепловые про- цессы и аппа- раты	7	0,5		2	42	Интерактивные лекции (презентации) с использованием программы MS PowerPoint, работа с текстовыми и раздаточными дидактическими материалами, организация групповых дискуссий	Защита ла- бораторных работ, ре- ферат, эк- замен
5	Массообмен- ные процессы и аппараты	7	0,5		1	40	Интерактивные лекции (презентации) с использованием программы MS	Защита ла- бораторных работ, ре-

				PowerPoint, работа с тек-	ферат,	эк-
				стовыми и раздаточными	замен	
				дидактическими материа-		
				лами, организация группо-		
				вых дискуссий		
Итого:	4	6	125		Экзамен	(9)

5. Содержание лекционных занятий по темам с указанием используемых инновационных образовательных технологий.

№	Раздел дисцип-	ча-	Тема лекционного занятия	Краткое содержание	Формируемые
п/п 1	Введение	2	Введение	Предмет, цели и задачи курса. Классификация основных процессов химической технологии.	ПК-9 ПК-13
2	Теоретиче- ские основы процессов хи- мической тех- нологии	0,5	Механизмы и уравнения переноса.	Механизмы и уравнения переноса. Законы сохранения. Моделирование. Межфазный перенос субстанций	ПК-9 ПК-13
3	Гидромеханические процессы и аппараты	0,5	Гидромеханические ТМПОПНГП	Гидромеханические ПАХТ. Разделение неоднородных систем. Перемешивание в жидких средах	ПК-9 ПК-13
4	Тепловые процессы и аппараты	0,5	Теплообменные ТМПОПНГП	Теплообменные ПАХТ. Теплообмен. Промышленные способы передачи тепла. Выпаривание	ПК-9 ПК-13
5	Массообмен- ные процессы и аппараты	0,5	Массообменные ТМПОПНГП	Массообменные ПАХТ. Массообмен. Абсорбция. Перегонка. Экстракция. Адсорбция. Сушка. Мембранные процессы	ПК-9 ПК-13

6. Содержание практических занятий с указанием используемых инновационных образовательных технологий.

В учебном плане дисциплины практические занятия не предусмотрены.

7. Содержание лабораторных занятий (предусмотрено учебным планом).

№ п/п	Раздел дисцип- лины	Ча- сы	Тема лабораторного занятия	Краткое содержание	Формируемые компетенции
1	Теоретические основы про- цессов хими- ческой техно- логии	1	Механизмы и уравнения переноса.	Механизмы и уравнения переноса. Законы сохранения. Моделирование. Межфазный перенос субстанций	ПК-9 ПК-13
2	Гидромеханические процессы и аппараты	2	Гидромеханические про- цессы	Гидромеханические ПАХТ. Разделение неоднородных систем. Перемешивание в жидких средах	ПК-9 ПК-13
3	Тепловые процессы и аппараты	2	Теплообменные процессы	Теплообменные процессы Теплообмен. Промышленные способы передачи тепла. Выпаривание	ПК-9 ПК-13
4	Массообмен- ные процессы и аппараты	1	Массообменные процессы	Массообменные процессы. Массообмен. Абсорбция. Перегонка. Адсорбция.	ПК-9 ПК-13

8. Самостоятельная работа бакалавра

Темы, выносимые на само- стоятельную работу	Часы	Форма СРС*	Формируемые компетенции
Введение	7	Реферат, экзамен	ПК-9 ПК-13
Теоретические основы процессов химической технологии	12	Защита лабораторных работ, реферат, экзамен	ПК-9 ПК-13
Гидромеханические процессы и аппараты	24	Защита лабораторных работ, реферат, экзамен	ПК-9 ПК-13
Тепловые процессы и аппараты	42	Защита лабораторных работ, реферат, экзамен	ПК-9 ПК-13
Массообменные процессы и аппараты	40	Защита лабораторных работ, реферат, экзамен	ПК-9 ПК-13

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Тепломассообменные процессы и оборудование в процессах нефтегазопереработки» _используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в <u>Положении ФГБОУ ВО «КНИТУ» от 04.09.2017 "О бальнорейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса"</u>.

По дисциплине предусмотрено выполнение четырех лабораторных работ, , написание реферата, экзамен. За все эти виды работ студент может набрать 100 баллов, которые входят в семестровую составляющую, которые распределяются по возможности равномерно по всему семестру. Минимальное количество баллов — 60. Максимальное количество баллов при сдаче экзамена составляет 40, минимальное - 24.

Оценочные средства	Кол-во	Міп, баллов	Мах, бал-
			лов
Лабораторная работа	3	3x6=18	3x9=27
Реферат	1	18	33
Экзамен	1	24	40
Итого		60	100

Пересчет итоговой суммы баллов за семестр, где предусмотрен зачет, в традиционную и международную оценку

Оценка	Итоговая сумма баллов	Оценка (ECTS)
5 (отлично)	87-100	А (отлично)
	83-86	В (очень хорошо)
4 (хорошо)	78-82	С (хорошо)
	74-77	D (удовлетворительно)
3 (удовлетворительно)	68-73	
	60-67	Е (посредственно)
2 (неудовлетворительно), (не зачтено)	Ниже 60 баллов	F (неудовлетворительно)

После окончания семестра студент, набравший менее 60 баллов, считается неуспевающим, не получившим зачет. Возможна дополнительная сдача (пересдача) контрольных точек в дополнительные сроки, согласованные с деканатом.

10. Учебно-методическое и информационное обеспечение дисциплины (модуля) «Тепломассообменные процессы и оборудование в процессах нефтегазопереработки»

10.1 Основная литература

При изучении дисциплины «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки» в качестве основных источников информации, рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
Баранов, Д.А. Процессы и аппараты химической технологии:	ЭБС «Лань»
учебное пособие / Д.А. Баранов. — 2-е изд., стер. — Санкт-	https://e.lanbook.com/book/98234
Петербург: Лань, 2018. — 408 с. — ISBN 978-5-8114-2295-	доступ из любой точки интернет
1. — Текст: электронный // Лань: электронно-библиотечная	после регистрации IP адресов
система.	КНИТУ
Разинов, А.И. Процессы и аппараты химической технологии:	ЭБС «Лань»
учебное пособие / А.И. Разинов, А.В. Клинов, Г.С. Дьяконов.	https://e.lanbook.com/book/102086
— Казань : КНИТУ, 2017. — 860 с. — ISBN 978-5-7882-2154-	доступ из любой точки интер-
0. — Текст : электронный // Лань : электронно-библиотечная	нет после регистрации IP адре-
система. — URL: (дата обращения: 13.03.2020). — Режим	сов КНИТУ
доступа: для авториз. пользователей.	

10.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
Бородулин, Д. М. Процессы и аппараты химической тех-	ЭБС «IPRbooks»
нологии: учебное пособие / Д. М. Бородулин, В. Н. Ива-	http://www.iprbookshop.ru/14388.html
нец. — Кемерово : Кемеровский технологический инсти-	доступ из любой точки интернет
тут пищевой промышленности, 2007. — 168 с. — ISBN	после регистрации IP адресов КНИ-
978-5-89289-435-7. — Текст: электронный // Электронно-	ТУ
библиотечная система IPR BOOKS : [сайт].	

10.3 Электронные источники информации

При изучении дисциплины «Тепло- массообменные процессы и оборудование в процессах нефтегазопереработки»_в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: https://ruslan.kstu.ru/
- 2. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru
- 3. ЭБС «Лань» Режим доступа:http://e.lanbook.com/books/

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины

Лекционные занятия:

- а) комплект электронных презентаций/слайдов,
- б) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).

Лабораторные занятия:

- а) компьютерный класс с персональными компьютерами, на которых установлено необходимое программное обеспечение;
 - б) лабораторные установки согласно рабочей программы и ФОСу.

Прочее:

- а) рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- б) рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Удельный вес занятий по дисциплине, проводимых в интерактивных формах, составляет 2 академических часа, из них: 2 часа – лабораторные занятия.

Интерактивные формы проведения учебных занятий:

- творческие задания (реферат, работа в группе).