Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор по УР
А.В. Бурмистров

<u>б//» 07</u> 20/9г.

РАБОЧАЯ ПРОГРАММА

По дисциплине <u>Б1.Б.14.4 «Детали машин»</u>	
Направление подготовки 20.03.01 «Техносфер	ная безопасность»
Профиль подготовки Безопасность жизнедея	тельности в техносфере
Квалификация (степень) выпускника	бакалавр
Форма обучения	заочная
Институт, факультет КМИЦ «Новые технолог	ми»
Кафедра-разработчик рабочей программы	КМИЦ «Новые технологии»
Курс, семестр $\underline{\text{курс}} - 3$, семестр $\underline{-5-6}$	

	Часы	Зачетные
	часы	единицы
Лекции	2	0,05
Практические занятия	-	-
Семинарские занятия		-
Лабораторные занятия	6	0,17
Самостоятельная работа	96	2,67
Форма аттестации	Зачет (4),	0,11
	курсовой	
	проект	HEAVY
Всего	108	3,0

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 246 от 21.03.2016 по направлению 20.03.01 «Техносферная безопасность», профиль подготовки «Безопасность жизнедеятельности в техносфере», на основании учебного плана набора обучающихся 2019 года.

Примерная программа по дисциплине отсутствует.

Разработчик программы:			
809	Canerl	(O.M.D)	,
(должность)	(похнись)	(Φ.Η.Ø)	
D. C		103 41 11 1	**
Рабочая программа рассм	отрена и одобрена н	на заседании КМИЦ	«Новые
технологии»,			
протокол от « <u>0</u> 7 » <u>06</u>	20 <u>∫9</u> Γ. № <u>6</u>		
Директор, профессор	1 bes	А.Ф. Махоткин	
(должность)	(подпись)	(Ф.И.О)	
УТВЕРЖДЕНО			
Протокол заседания методич	неской комиссии КМИЦ	«Новые технологии»	
от « <u>0</u> 1 » <u>06</u> 20/9 г	r. № <u>6</u>		
	60		
Председатель комиссии, прос	heccop May	А.Ф. Махоткин	
(должность)	(подпись)	7 (Ф.И.О)	
	m.		
Начальник УМЦ	HIMILES	Л. А. Китаева	
(должность)	(подпись)	(Ф.И.О)	

1. Цели освоения дисциплины

Целями освоения дисциплины «Детали машин» являются:

- а) изучение основ теории, расчета и конструирования деталей и узлов машин, аппаратов и подъемно-транспортных машин;
- б) формирование теоретических знаний и практических навыков в области расчета и проектировании деталей и узлов, исходя из условий их работы;
 - в) формирование конструкторских навыков в области проектирования.

2. Место дисциплины в структуре образовательной программы (ОП)

Дисциплина Б1.Б.14.4 «Детали машин» относится к базовой части ОП и формирует у бакалавров по направлению подготовки 20.03.01 «Техносферная безопасность» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины Б1.Б.14.4 «Детали машин» бакалавр по направлению подготовки 20.03.01 «Техносферная безопасность» должен освоить материал предшествующих дисциплин:

- Б1.Б.5 Высшая математика;
- Б1.Б.14.1 Теоретическая механика;
- Б1.Б.14.2 Сопротивление материалов.

Последующие учебные дисциплины не предусмотрены основной образовательной программой.

Знания, полученные при изучении дисциплины Б1.Б.14.4 «Детали машин» могут быть использованы при прохождении преддипломной практики и выполнении выпускной квалификационной работы по направлению подготовки 20.03.01 «Техносферная безопасность».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- ПК-2 способностью разрабатывать и использовать графическую документацию.
- ПК-3 способностью оценивать риск и определять меры по обеспечению безопасности разрабатываемой техники.
- ПК-4 способностью использовать методы расчетов элементов технологического оборудования по критериям работоспособности и надежности.

В результате освоения дисциплины обучающийся должен:

1) Знать:

состояние и перспективы развития машиностроения; основные признаки работоспособности деталей машин; методы расчета на прочность простых деталей общего применения; обозначения обработки и соединения деталей, указываемых на чертежах.

2) Уметь:

производить расчеты на прочность простых деталей общего назначения; обосновывать выбор материала и термическую обработку деталей машин; осуществлять рациональный выбор стандартных деталей.

3) Владеть:

владеть навыками использования справочной литературы и нормативнотехнической документации для решения инженерных задач.

4. Структура и содержание дисциплины «Детали машин».

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

	Раздел дисциплины		Виды	(в ча	ой раб сах)	оты	Информационные и другие образовательные технологии,	Оценочные средства для проведения промежуточн	
№ п/ п		семестр	Лекц ия	Семи нар (Прак ти- ческо е занят ие)	Лабор аторн ые работ ы	СРС	используемые при осуществлении образовательного процесса	ой аттестации по разделам	
1	Общие вопросы проектирован ия	5	2	-	-	7	При проведении практической работы используют проектор и ноутбук	Тестирование	
2	Механически е передачи	6	-	-	4	26	При проведении практической работы используют проектор и ноутбук	Лабораторная работа	
3	Валы и оси	6	-	-	2	27	При проведении практической работы используют проектор и ноутбук	Лабораторная работа	
4	Курсовой проект	6	-	-	-	36		Защита курсового проекта	
	Форма аттестации								

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№	Раздел	Ча	Тема лекционного		Краткое содержание		Формируемые	
п/п	дисциплины	сы	заняти	Я			компет	генции
1	Общие		Общие	вопросы	Общие	вопросы	ПК-2,	ПК-3,
	вопросы	2	проектирования	I	проектирован	ия. Пути	ПК-4	
	проектирова	2			повышения	надежности		
	ния				деталей	машин.		

	Конструкционные	
	материалы, применяемые	
	в машиностроении.	
	Основные понятия и	
	показатели надежности.	
	Критерии	
	работоспособности и	
	расчета деталей.	

6. Содержание семинарских, практических занятий (лабораторного практикума)

Учебным планом по направлению подготовки 20.03.01 «Техносферная безопасность» не предусмотрено проведение практических занятий по дисциплине «Детали машин».

7. Содержание лабораторных занятий

No	Раздел	Ча	Тема лабораторного	Тема лабораторного Краткое содержание		
п/п	дисциплины	сы	занятия		компетенции	
2	Механически		1. Разборка, измерение и	1. Разборка, измерение и	ПК-2, ПК-3,	
	е передачи		сборка цилиндрического	сборка цилиндрического	ПК-4	
			зубчатого редуктора.	зубчатого редуктора.		
		4	2. Изучение	2. Изучение		
		4	конструкции, разборка,	конструкции, разборка,		
			измерение, сборка и	измерение, сборка и		
			регулировка червячного	регулировка червячного		
			редуктора.	редуктора.		
3	Валы и оси		3. Изучение	3. Изучение конструкции	ПК-2, ПК-3,	
		2	конструкции	подшипников качения	ПК-4	
			подшипников качения			

8. Самостоятельная работа бакалавра

Темы, выносимые на самостоятельную работу	Часы	Форма СРС*	Формируемые компетенции
Общие вопрось проектирования	7	Изучение базовой и дополнительной литературы, конспектирование изученных источников. Подготовка к тестированию	ПК-2, ПК-3, ПК-4
Механические передачи	26	Изучение базовой и дополнительной литературы, конспектирование изученных источников. Подготовка к лабораторной работе.	
Валы и оси	27	Изучение базовой и дополнительной литературы, конспектирование изученных источников. Подготовка к лабораторной работе.	

Курсовой проект		Изучение	базовой	И	доп	олнительной	ПК-2, ПК-3, ПК-4
	36	литературы, источников. курсового пр	Разрабо			изученных оформление	

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности студентов в рамках дисциплины «Детали машин» используется балльно-рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в Положении ФГБОУ ВО «КНИТУ» от 04.09.2017 "О балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса".

По дисциплине предусматривается выполнение двух лабораторных работ, контрольное тестирование. За все эти виды работ студент может набрать 100 баллов, которые входят в семестровую составляющую, которые распределяются по возможности равномерно по всему семестру. Минимальное количество баллов – 60.

Оценочные средства	Кол-во	Міп, баллов	Max,
			баллов
Лабораторная работа	3	2*9=27	2*15=45
Контрольное тестирование	1	33	55
		60	100

Пересчет итоговой суммы баллов за семестр, где предусмотрен зачет, в традиционную и международную оценку

Оценка	Итоговая сумма баллов	Оценка (ECTS)
5 (отлично)	87-100	А (отлично)
	83-86	В (очень хорошо)
4 (хорошо)	78-82	С (хорошо)
	74-77	D (удовлетворительно)
3 (удовлетворительно)	68-73	,
-	60-67	Е (посредственно)
2 (неудовлетворительно) (не зачтено)	Ниже 60 баллов	F (неудовлетворительно

После окончания семестра студент, набравший менее 60 баллов, считается неуспевающим, не получившим зачет. Возможна дополнительная сдача (пересдача) контрольных точек в дополнительные сроки, согласованные с деканатом.

В соответствие с учебным планом запланирован курсовой проект по дисциплине. За выполнение курсовой работы начисляются баллы. Максимальное количество баллов – 100, минимальное количество баллов – 60. Курсовой проект включает в себя три критерия оценки: формальный, содержательный и презентационный.

Формальный и содержательный критерии формируют текущий рейтинг обучающегося. Презентационный – рубежный рейтинг обучающегося.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Курсовой проект	1	60	100

10. Учебно-методическое и информационное обеспечение дисциплины (модуля) «Детали машин»

10.1 Основная литература

При изучении дисциплины «Детали машин» в качестве основных источников информации, рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.	
1. Куклин, Н. Г. Детали машин:	ЭБС «Znanium.com»	
Учебник/Куклин Н. Г., Куклина Г. С.,	https://znanium.com/catalog/product/9676	
Житков В. К., 9-е изд., перераб. и доп -	81	
Москва: КУРС, НИЦ ИНФРА-М, 2019 512	доступ из любой точки интернет после	
c ISBN 978-5-905554-84-1.	регистрации ІР адресов КНИТУ	
2. Беляев, А. Н. Детали машин и основы	ЭБС «IPR BOOKS»	
конструирования. Лабораторный практикум:	http://www.iprbookshop.ru/72660.html	
учебное пособие / А. Н. Беляев, А. В.	доступ из любой точки интернет после	
Кочегаров, В. В. Шередекин; под редакцией	регистрации ІР адресов КНИТУ	
А. Н. Беляев. — Воронеж: Воронежский		
Государственный Аграрный Университет им.		
Императора Петра Первого, 2015. — 220 с. —		
ISBN 978-5-7267-0820-1.		
3. Доброборский, Б. С. Детали машин:	ЭБС «IPR BOOKS»	
учебное пособие по выполнению курсового	http://www.iprbookshop.ru/18993.html	
проекта / Б. С. Доброборский. — Санкт-	доступ из любой точки интернет после	
Петербург: Санкт-Петербургский	регистрации ІР адресов КНИТУ	
государственный архитектурно-		
строительный университет, ЭБС АСВ, 2012.		
— 44 c. — ISBN 978-5-9227-0369-7.		

10.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.	
1. Леонова, О. В. Детали машин и основы	ЭБС «IPR BOOKS»	
конструирования: лабораторный практикум / О. В.	http://www.iprbookshop.ru/46704.html	
Леонова, А. И. Вашунин. — Москва: Московская	доступ из любой точки интернет	
государственная академия водного транспорта,	после регистрации IP адресов	
2007. — 64 c. — ISBN 2227-8397.	КНИТУ	
2. Гурин, В. В. Детали машин. Курсовое	ЭБС «IPR BOOKS»	
проектирование. Книга 1: учебник / В. В. Гурин,	http://www.iprbookshop.ru/34662.html	
В. М. Замятин, А. М. Попов. — Томск: Томский	доступ из любой точки интернет	
политехнический университет, 2009. — 367 с. —	после регистрации ІР адресов	
ISBN 978-5-98298-551-4.	КНИТУ	
3. Гурин, В. В. Детали машин. Курсовое	ЭБС «IPR BOOKS»	
проектирование. Книга 2: учебник / В. В. Гурин,	http://www.iprbookshop.ru/34663.html	
В. М. Замятин, А. М. Попов. — Томск: Томский	доступ из любой точки интернет	
политехнический университет, 2009. — 296 с. —	после регистрации ІР адресов	

ISBN 978-5-98298-553-8.	КНИТУ
4. Никитин, Д. В. Детали машин и основы	ЭБС «IPR BOOKS»
конструирования. Часть 1. Механические	http://www.iprbookshop.ru/64080.html
передачи: учебное пособие для студентов,	доступ из любой точки интернет
обучающихся по направлениям 35.03.06, 23.03.03,	после регистрации ІР адресов
15.03.02, 15.03.05, 18.03.02 / Д. В. Никитин, Ю. В.	КНИТУ
Родионов, И. В. Иванова. — Тамбов: Тамбовский	
государственный технический университет, ЭБС	
ACB, 2015. — 112 c. — ISBN 978-5-8265-1398-9.	

10.3 Электронные источники информации

При изучении дисциплины «Детали машин» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: https://ruslan.kstu.ru/
- 3. ЭБС «IPR BOOKS» Режим доступа: http://www.iprbookshop.ru
- 4. ЭБС «ZNANIUM.COM» Режим доступа: https://znanium.com

10.4 Профессиональные базы данных и информационные справочные системы

Название	Краткое описание	Режим доступа
Knovel (Elsevier)	Электронная база данных для поиска инженерной информации и поддержки	https://app.knovel.com
	принятия инженерных решений	

Согласовано:

Зав. сектором ОКУФ

ФЕДЕЛАЛЬНИЕ ГОСУДАРСТВЕННЫЯ СОДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОГА ПРЕЖДЕНИЕ ВЫСШЕГО В ТЕХНОВИТЕЛЬНОГО В ТЕХНОВИТ

Усольцева И.И.

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины

В качестве материально-технического обеспечения дисциплины используются:

- учебная аудитория для проведения занятий лекционного типа (оснащение: столы, стулья для обучающихся; стол, стул для преподавателя; доска, ноутбук, проектор);
- учебная аудитория для проведения занятий лабораторного типа (станки балансировочные (2 шт), комплект типовой для лаборатории ТММ, комплект учебной мебели);
- помещение для самостоятельной работы: г. Казань, ул. Сибирский тракт, д. 12, этаж 1, Д- 120 (отдел электронных и периодических информационных ресурсов УНИЦ КНИТУ) (оснащение: комплект учебной мебели);
 - учебная аудитория для проведения экзамена (парты, стулья, доска настенная учебная).

Лицензированное, свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «Детали машин»:

- -MS Office 2010-2016 Standard or 08.11.2016 No 16/2189/B
- Linux GNU General Public License.

13. Образовательные технологии

Удельный вес занятий по дисциплине, проводимых в интерактивных формах, составляет 4 часа, из них: 4 часа – лабораторные занятия.

Интерактивные формы проведения учебных занятий:

- творческие задания (работа в группе, курсовой проект).

В случае возникновения вопросов при подготовке к лабораторным занятиям, подготовке курсового проекта внеаудиторных часов студент может обратиться к преподавателю удаленно по электронной почте.