Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО КНИТУ)

УТВЕРЖДАЮ
Проректор по УР
А.В.Бурмистров
2019 г.

РАБОЧАЯПРОГРАММА

По дисциплине Б1.В.ОД.1 «Горение энергонасыщенных материалов»

Специальность 20.05.01 Пожарная безопасность
Специализация Пожарная безопасность химических производств
Квалификация (степень) выпускника

Форма обучения

Институт

Факультет

ФЭМИ

Кафедра-разработчик рабочей программы ТИПиКМ

Курс 3

Семестр 6

	Часы	Зачетные единицы
Лекции	36	1,0
Практические занятия	-	-
Семинарские занятия	-	-
Лабораторные занятия	36	1,0
Самостоятельная работа	72	2,0
Форма аттестации - экзамен	36	1,0
Всего	180	5,0

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 851 утвержден 17.08.2015 г.)

по специальности 20.05.01 «Пожарная безопасность» на основании учебного плана набора 2019 г.

Типовая программа по дисциплине отсутствует

Разработчи доцент	жи программы Вессоя	О.И.Белобородова
	ограмма рассмотрен № 11 от 03 000	а и одобрена на заседании кафедры ТИПиКМ 019 г.
Зав. кафедр	ой, профессор	- HELE Тимофеев

УТВЕРЖДЕНО

Протокол заседания методической комиссии ИХТИ от 21 06 2019 г. № 6

Председатель методической комиссии,

профессор

Начальник УМЦ

Другия Л. А. Китаева

1. Цели освоения дисциплины

Цель преподавания дисциплины «Горение энергонасыщенных материалов»:

- а) формирование знаний о свойствах компонентов и композиций энергонасыщенных материалов;
- б) раскрытие сущности процессов, происходящих в энергонасыщенных материалах при горении;
- в) обучение методикам расчета энергетических характеристик энергонасыщенных материалов;
- г) обучение принципам построения рецептур энергонасыщенных материалов для изделий различного назначения.

2. Место дисциплины в структуре основной образовательной программы

Дисциплина «Горение энергонасыщенных материалов» относится к обязательным дисциплинам вариативной части основной образовательной программы (ООП) подготовки специалистов по специальности 20.05.01 «Пожарная безопасность». Изучаемый материал дает необходимую базу для профессиональной деятельности, В которой закладываются теоретические и практические знания, навыки и умения, для дальнейшего (мастерства) профессионального уровня специалиста пожарной безопасности.

Дисциплина ООП, на которую опирается содержание данной дисциплины: «Общая и неорганическая химия», «Физика», «Энергонасыщенные материалы и изделия».

Дисциплины и разделы ООП, для которых содержание данной дисциплины выступает опорой: «Прогнозирование опасных факторов», «Пожарная безопасность технологических процессов», «Технологическая и пожарная безопасность производств энергонасыщенных материалов», «Конструкция и устройство средств объемного пожаротушения», «Технология изготовления средств объемного пожаротушения», производственная практика по получению профессиональных умений и опыта профессиональной деятельности, государственная итоговая аттестация.

3. Компетенции обучающегося, формируемые в результате освоении дисциплины «Горение энергонасыщенных материалов»

Профессиональные компетенции:

ПК-8 - способностью понимать основные закономерности процессов возникновения горения и взрыва, распространения и прекращения горения на пожарах, особенностей динамики пожаров, механизмов действия, номенклатуры и способов применения огнетушащих составов, экологических характеристик горючих материалов и огнетушащих составов на разных стадиях развития пожара.

Специальные компетенции:

ПСК-1 - владение современными технологиями изготовления элементов снаряжения средств пожаротушения с применением энергонасыщенных материалов;

ПСК-3 - способность осуществлять обоснованный выбор средств пожаротушения в зоне промышленного производства энергонасыщенных материалов и изделий.

В результате освоения дисциплины «Горение энергонасыщенных материалов» обучающийся должен

Знать:

- свойства энергонасыщенных материалов и специальные эффекты их действия:
- особенности процесса горения энергонасыщенных материалов;
- методы определения и регулирования основных характеристик горения ЭНМ.

Уметь:

- применять закономерности горения для регулирования основных характеристик горения ПС;
- рассчитывать основные параметры процесса горения ПС, количество газообразных конденсированных продуктов сгорания;
- прогнозировать физико-химические свойства при хранении;
- прогнозировать взрывчатые характеристики ПС.

Владеть:

- методами расчета и прогнозирования характеристик горения ЭНМ и качества специального эффекта действия;
- методами испытаний и определений специальных характеристик ЭНМ различного назначения.

4. Структура и содержание дисциплины «Горение энергонасыщенных материалов»

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

№ п/п	Раздел дисципли- ны	Семестр		учебной боты в часах) Лабораторные заня-	í pa-	Информационные и другие образовательные технологии, используемые при осуществлении образовательного процесса	Оценочные средства для проведения промежуточной аттестации по разделам
1	Тема 1. Понятие о процессе горения.	6	6		18	Лекция с использованием компьютерных презентаций,	Контрольная работа 1

2	Тема 2. Механизм горения конденсиро ванных систем.	6	12		18	групповая работа с иллюстративным материалом, групповая дискуссия Лекция с использованием компьютерных презентаций, групповая работа с иллюстративным материалом, групповая дискуссия	Контрольная работа 2
	Тема 3. Основные и эксплуатац ионные характерис тики горения	6	12	24	18	Лекция с использованием компьютерных презентаций, групповая работа с иллюстративным материалом; лабораторная экспериментальная работа с элементами решения проблемных задач	Отчет по ла- бораторной работе
	Тема 4. Свойства энергонасы щенных материалов	6	6	12	18	Лекция с использованием компьютерных презентаций, групповая работа с иллюстративным материалом; лабораторная экспериментальная работа с элементами решения проблемных задач	Групповая дискуссия — — — — — — — — — — — — — — — — — — —
	Итого:		36	36	72		Экзамен

5. Содержание лекционных занятий по темам с указанием используемых инновационных образовательных технологий.

No	Раздел	Часы	Тема	Краткое содержание	Форми-
Π/Π	дисци-		лекцион-		руемые
	плины		ного за-		компе-
			нятия		тенции
1		2	Виды превра- щений ЭНМ	Медленное химическое превращение, горение, взрыв, детонация.	ПК-8, ПСК-1, ПСК-3
2	Тема 1. Понятие о процессе горения.	4	Основны е условия протекан ия химическ ой реакции в форме горения.	Тепловая теория горения, закон Аррениуса. Многостадийность процесса, фронт горения. Параметры процесса горения: скорость, тепловыделение, продукты горения.	
3	Тема 2. Механиз м горения конденси рованных систем.	6	Стациона рное горение порохов и СТТ, их отличите льные особенно сти	Прогретый слой, диспергирование, беспламенное горение. Ведущая стадия в процессе горения. Закон скорости горения. Влияние различных факторов на параметры горения СТТ.	
4		6	Горение металл- содер- жащих гетеро- генных конден- сирован- ных си- стем	Особенности процесса горения МКС. Целевые продукты горения и их двухфазность. Механизм горения. Влияние различных факторов на параметры горения МКС.	ПК-8, ПСК-1, ПСК-3

5	Тема 3. Основны е характер истики горения	4	Темпера- тура го- рения	Способы регулирования характеристики. Методы определения: Энтальпийный метод расчета температуры горения. Экспериментальное определение радиационным и контактными методами	ПК-8, ПСК-1, ПСК-3
6		4	Теплота сгорания	Виды теплоты сгорания, факторы, влияющие на ее значение. Закон Гесса, калориметрический метод определения теплоты сгорания.	ПК-8, ПСК-1, ПСК-3
7		4	Скорость горения	Линейная и массовая скорость горения. Требования по скорости горения. Влияние различных факторов на скорость горения. Влияние горения. Влияние внешних факторов на скорость горения.	ПК-8, ПСК-1, ПСК-3
8	Тема 4. Эксплуат ационные свойства энергонас ыщенных материал ов	6	Безопасность и безотказность действия ЭНМ	Химическая стойкость. Физическая стабильность. Гарантийный срок хранения. Чувствительность к тепловым и механическим воздействиям. Методы испытания ЭНМ и определения основных характеристик процесса горения.	ПК-8, ПСК-1, ПСК-3
	Итого:	36			

6. Содержание практических занятий Учебным планом специальности «Пожарная безопасность» проведение практических занятий по дисциплине «Горение энергонасыщенных материалов» не предусмотрено.

7. Содержание лабораторных занятий с указанием используемых

инновационных образовательных технологий

$N_{\underline{0}}$	Раздел дисци-	Ча-	Тема практиче-	Краткое содержание	Форми-
π/	плины	сы	ского занятия	приткое водержите	руемые
П	11,11111111	CDI	choro sannini		компе-
					тенции
1	Тема 3.	12	Температура	Расчетный метод опреде-	ПК-8,
1	Основные	12		· · · · · · ·	ПСК-1,
			горения энер-	ления температуры горе-	
	характеристик		гонасыщенных	ния. Расчет по программе	ПСК-3
	и горения		материалов	«Термо» температуры го-	
				рения энтальпийным ме-	
				тодом. Изучение фотопи-	
				рометрического метода	
				определения температуры.	
				Изготовление образцов,	
				испытание, обработка	
				экспериментальных дан-	
				ных, сравнительный ана-	
				лиз расчетных и экспери-	
				ментальных характери-	
				стик, групповая дискус-	
				сия, коллоквиум.	
2		12	Теплота сгора-	Расчет по закону Гесса	ПК-8,
			ния энергона-	теплоты сгорания на	ПСК-1,
			сыщенных ма-	ЭВМ по программе	ПСК-3
			териалов	«Термо», изготовление	
				образцов из составов,	
				предложенных студента-	
				ми, испытание образцов	
				на установке АВК-1В,	
				анализ полученных дан-	
				ных по влиянию исследу-	
				емых факторов на теплоту	
				сгорания. Групповая дис-	
				куссия, коллоквиум.	
3	Тема 4.	12	Чувствитель-	Сравнительный анализ	ПК-8,
	Эксплуатацио	12	ность к тепло-	влияния различных фак-	ПСК-1,
	нные свойства		вым и механи-	торов на чувствительность	ПСК-1,
	энергонасыще		ческим воздей-	к тепловым и механиче-	
	нных		ствиям.	ским воздействиям; выбор	
	материалов		VIBINIVI.	со студентами одного из	
	marephanob			факторов; изготовление	
				образцов, проведение ис-	
				пытаний, обработка полу-	
				1	
				ченных эксперименталь-	
				ных данных. Групповая	
	Umana	26		дискуссия, коллоквиум.	
	Итого	36			

8. Самостоятельная работа студента

Темы, выносимые на само-	Часы	Форма СРС	Форми-
стоятельную работу			руемые
			компе-
			тенции
	18	Проработка лекционного	ПК-8,
Тема 1. Понятие о процессе		материала и литературы.	ПСК-1,
горения.		Подготовка к контрольной	ПСК-3
		работе	
Тема 2. Механизм горения	18	Проработка лекционного	ПК-8,
конденсированных систем.		материала и литературы.	ПСК-1,
		Подготовка к контрольной	ПСК-3
		работе	
Тема 3. Основные	18	Проработка лекционного	ПК-8,
характеристики горения		материала и литературы.	ПСК-1,
		Подготовка отчета по лабо-	ПСК-3
		раторной работе	
Тема 4. Эксплуатационные	18	Проработка лекционного	ПК-8,
свойства энергонасыщенных		материала и литературы.	ПСК-1,
материалов		Подготовка отчета по лабо-	ПСК-3
		раторной работе	
Итого	72		
	1		

9. Использование рейтинговой системы оценки знаний

Оценка результатов деятельности студентов в рамках дисциплины проводится в соответствии с «Положением о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» КНИТУ

Максимальный рейтинг студента – 100 баллов, минимальный составляет 60 баллов.

Пересчет рейтинга в традиционную и международную оценки системы оценки знаний производится в соответствии с установленной шкалой, приведенной в таблице

Пересчет рейтинга в традиционную оценку

Оценка	Итоговая сумма баллов
Отлично (5)	87- 100
Хорошо (4)	73-87
Удовлетворительно (3)	60-73
Неудовлетворительно (2)	Ниже 60

Текущий рейтинг складывается из оценки следующих видов контроля:

Вид контроля	Балл – (тах)	Балл – (min)
1. Контрольная работа 1	15	10
2. Контрольная работа 2	15	10
3 Лабораторная работа	15 (3×5)	9 (3×3)
4. Групповая дискуссия	15	7
5. Экзамен	40	24
ВСЕГО	100	60

10. Учебно-методическое и информационное обеспечение дисциплины «Горение энергонасыщенных материалов»

10.1 Основная литература

При изучении дисциплины «Горение энергонасыщенных материалов» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
1. Вареных Н.М. Пиротехника: учебник /	50 экз. в УНИЦ КНИТУ
Н.М.Вареных, В.Н.Емельянов, А.С.Дудырев, И.А.	
Абдуллин, Н.Е.Тимофеев, М.С. Резников. –	
Казань: КНИТУ, 2015. – 340 с.	
2. Абдуллин И.А. Гражданская пиротехника:	50 экз. в УНИЦ КНИТУ
учебное пособие / И.А. Абдуллин, М.С. Резников,	
А.И. Сидоров [и др.]. – Казань: КНИТУ, 2013. –	
340 c.	
3. Абдуллин И.А. Бронебойно-зажигательные	15 экз. в УНИЦ КНИТУ
боеприпасы к стрелковому оружию: учебное	15 экз. на кафедре
пособие / И.А.Абдуллин, А.Б.Заволокин,	
В.Н.Лепин, А.С.Михайлов, О.И.Белобородова	
Казань: КНИТУ, 2013. – 200с.	

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Батурова Г.С. Теоретические основы	http://ft.kstu.ru/ft/Baturova-
пиротехники: практикум [Электронный ресурс]. –	Teoriticheskie osnovy pirotekhniki.pdf
Казань: КНИТУ, 2017. – 322 с.	Доступ с IP адресов КНИТУ
2. Батурова Г.С. Спектры пламен: учебное	15 экз. в УНИЦ КНИТУ
пособие / Г.С. Батурова, Л.А. Кипрова. – Казань:	15 экз. на кафедре
КНИТУ, 2014. – 208 с.	

3. Рогов Н.Г. Физико-химические свойства порохов и твердых ракетных топлив / Н.Г. Рогов, Ю.А. Груздев. — СПбГТУ, 2005. — 200 с.	39 экз. в УНИЦ КНИТУ
4. Мадякин Ф.П. Сигнальные и фейерверочные составы и изделия: учебное пособие / Ф.П. Мадякин, Н.А. Тихонова, О.Ф. Тютюнник. – Казань: КГТУ, 2005. – 148 с.	149 экз. в УНИЦ КНИТУ
5. Мадякин Ф.П. Компоненты и продукты сгорания пиротехнических составов: учебное пособие / Ф.П. Мадякин. – Казань: КГТУ, 2006. – 500 с.	119 экз. в УНИЦ КНИТУ
 Демидов А.Н. Краткий курс пиротехники / А.Н. Демидов, А.А. Фрейман, В.А. Лихачёв. – Сергиев Посад: Изд. Русская пиротехника, 2008. – 304 с. 	10 экз. в УНИЦ КНИТУ 3 экз. на кафедре

10.3 Электронные источники информации

1. Научная Электронная Библиотека (НЭБ) – Режим доступа: http://elibrary.ru

2. Электронный каталог УНИЦ КНИТУ – Режим доступа: http://ruslan.kstu.ru

3. ЭБС «Консультант студента» http://www.studentlibrary.ru

Согласовано: УНИЦ КНИТУ

10.4. Профессиональные базы данных и информационные справочные системы

Базы данных:

Scopus Доступ свободный: www.scopus.com

Web of Science Доступ свободный: apps.webofknowledge.com

Информационные справочные системы:

Справочно-правовая система «ГАРАНТ» Доступ свободный: www.garant.ru

Справочно-правовая система «КонсультантПлюс» Доступ свободный: www.consultant.ru

11. Оценочные средства для определения результатов освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, в том числе отечественного производства, используемое в учебном процессе при освоении дисциплины «Горение энергонасыщенных материалов»:

Офисные и деловые программы: ABBYY FineReader 9.0 проф;

Офисные и деловые программы: MS Office 2007 Russian;

Офисные и деловые программы: MS Office 2007 Professional Russian;

Офисные и деловые программы: MS Office 2010-2016 Standard

Архиватор 7 Zip

Блокнот Notepad

Яндекс Браузер

Научное ПО ANSYS Academic Research Mechanical and CFD

3D моделирование / CAD Blender FreeCAD

LibreCAD

Материально-техническое обеспечение дисциплины «Горение энергонасыщенных материалов» предполагает наличие учебного кабинета для проведения лекций; компьютерного класса для расчета термодинамических характеристик; лабораторий для изготовления и испытания образцов.

Оборудование учебного кабинета и компьютерного класса: доска для записей; технические средства обучения: ноутбук, мультимедийный проектор, экран; ЭВМ с программным обеспечением — программа термодинамического расчета «Термо»; макеты изделий, содержащих энергонасыщенные композиционные материалы.

Оборудование лабораторий и рабочих мест лабораторий: шкаф вытяж-

ной с электрикой, стол лабораторный с технологической приставкой, весы электронные лабораторные АЈ-220 СЕ (220г/0,001г) ViBRA; электронагревательные приборы (шкаф сушильный лабораторный СНОЛ-58/350, пресс гидравлический типа ПСУ-50, анализатор ситовой AS 200 Control с набором сит, инфракрасный фурье-спектрометр «Avatar 360» «Тегто Nicolete», микроскоп OLIMPUS, оборудование для сжигания образцов, приборы для измерения цветовых характеристик (колориметры), аэрозольная и дымовая камеры.

13. Образовательные технологии

При обучении дисциплине «Горение энергонасыщенных материалов» используются следующие образовательные технологии:

- лекции в традиционной форме с использованием иллюстрационного материала в виде компьютерных презентаций;
 - групповая работа с иллюстративным материалом;
- лабораторные экспериментальные и расчетные работы в традиционной форме и с элементами решения проблемных задач с последующим обсуждением результатов работы в студенческих учебных подгруппах;
 - групповая дискуссия по реферативным темам;
- информационные технологии (при выполнении расчетов, экспериментов и СРС).

Объем занятий, проводимых в интерактивных формах, составляет 12 ч.