Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор по УР
А.В. Бурмистров
20 / 9 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине (шифр) <u>ФИЗИКА (Б1.Б.6)</u>
Направление подготовки 15.03.02 «Технологические машины и
<u>оборудование»</u>
Профиль подготовки «Технологическое оборудование химических и
нефтехимических производств »
«Оборудование нефтегазопереработки»
Квалификация (степень) выпускника БАКАЛАВР
Форма обучения ЗАОЧНАЯ
Институт ИХНМ,
Факультет МФ
Кафедра-разработчик рабочей программы « ФИЗИКИ »
Курс, семестр <u>1 курс,</u> (1, 2 семестр), 2 курс (3, 4 семестр)

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	4	0,11
Лабораторные занятия	22	0,61
Самостоятельная работа	366	10,17
Форма аттестации: зачет, экзамен	22	0,61
Всего	432	12

государственного образовательного стандарта высшего образования № 1170 от 20.10.15 по направлению 15.03.02 «Технологические машины и оборудование» по профилям «Технологическое оборудование химических и нефтехимических производств», «Оборудование нефтегазопереработки» на основании учебного плана набора обучающихся 2019 года. Типовая программа по дисциплине отсутствует. Разработчик программы: olley Миракова Т.Ю. доцент Рабочая программа рассмотрена и одобрена на заседании кафедры физики протокол от су 07. 19 № (Φ.N.O.) СОГЛАСОВАНО Протокол заседания методической комиссии МФ от « 08 » 07 ____ 20 9 г. (факультета или института, реализующего подготовку образовательной программы) Председатель комиссии, профессор (подпись) (Ф.И.О.)

программа составлена с учетом требований Федерального

УТВЕРЖДЕНО

Протокол заседания методической комиссии ФНН_

(факультета или института, к которому относится кафедра-разработчик РП)

от «<u>29</u>» <u>08</u> 201<u>9</u> г. № <u>21/3</u>

Председатель комиссии, профессор

В.А. Сысоев

Начальник УМЦ (подпись) (Ф.И.О.) (подпись) (Ф.И.О.) (Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины «Физика» являются:

- а) формирование общего физического мировоззрения с целью заложить фундамент, необходимый для успешного освоения специальных дисциплин и применения этих знаний в избранной профессии;
- б) обучение технологии получения студентами основополагающих представлений об основных подходах к описанию реальных физических процессов и явлений, как на классическом, так и на квантовом уровне;
- в) обучение способам применения методов физико-математического анализа к решению конкретных естественнонаучных и технических проблем, приобретение навыков работы с приборами и оборудованием физической лаборатории, навыков использования различных методик физических измерений и обработки экспериментальных данных;
- г) раскрытие сущности основных физических теорий, позволяющих описать явления в природе, пределов применимости этих теорий для решения современных и перспективных профессиональных задач.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина <u>«Физика»</u> (Б1.Б.6) относится базовой части ОП и формирует у бакалавров по направлению 15.03.02 <u>«Технологические машины и оборудование</u>» набор знаний, умений, навыков и компетенций. Для успешного освоения дисциплины <u>физика</u> бакалавр по направлению подготовки 15.03.02 <u>«Технологические машины и оборудование</u>» должен освоить материал предшествующих дисциплин:

а) Математика (Б1.Б.5).

Дисциплина физика является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) теоретическая механика (Б1.Б.10);
- б) сопротивление материалов (Б1.Б.12);
- в) электроника и электротехника (Б1.Б.17);
- г) механика жидкости и газа (Б1.Б.18);
- д) термодинамика (Б1.Б.22);

Знания, полученные при изучении дисциплины физика могут быть использованы при прохождении практик (производственной, преддипломной) и выполнении выпускных квалификационных работ по направлению подготовки 15.03.02 «Технологические машины и оборудование».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- 1. ПК-1 способностью к систематическому изучению научно-технической информации, отечественного и зарубежного опыта по соответствующему профилю подготовки;
- 2. ПК-2 умением моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов.

В результате освоения дисциплины обучающийся должен:

В результате освоения дисциплины " Φ изика" обучающийся должен:

1. Знать:

- основные понятия и теории, описывающие состояние физических объектов и протекающие в них физические процессы;
- математические методы, позволяющие адекватно описать и объяснить протекание любого конкретного физического процесса или явления;
- современные теории, объясняющие природу основных физических явлений, причины их возникновения и взаимосвязи;

2. Уметь:

- \- применять фундаментальные знания для решения задач применительно к реальным процессам
- применять фундаментальные физические законы и модели для решения инженерных задач;
- -планировать и ставить научный эксперимент; обрабатывать результаты измерений;
- выполнять численные оценки порядков величин, характерных для различных разделов естествознания.

3. Владеть:

- аналитическими и численными методами решения алгебраических и дифференциальных уравнений, уравнений математической физики; методами статистической обработки экспериментальных данных.
- навыками применения систем физических единиц при интерпретации результатов физических экспериментов;
- навыками работы с измерительными приборами и математическими методами обработки экспериментальных результатов

4. Структура и содержание дисциплины «<u>Физика»</u>

Общая трудоемкость дисциплины составляет 12 зачетных единиц, 432 часов.

№ п/п	Раздел дисциплины		рабо	ы учебной ты асах)		Оценочные средства для проведения		
		Семестр	Лекции	Семин ар (Практ и- ческие заняти я)	Лабора торные работы	CPC	Всего часов	промежуточной аттестации по разделам
	Установочная лекция	1	2				2	
1	Физические основы механики	2	2	-	6	81	89	Текущий контроль, контрольная работа
2	Статистическая физика и термодинамика	2	2	-	6	81	89	Текущий контроль, контрольная работа
	Форма аттестации	2					9	экзамен
3	Электричество	3	3		4	27	34	Текущий контроль, контрольная работа
4	Электромагнетизм	3	3		4	27	34	Текущий контроль, контрольная работа
	Форма аттестации	3					6	зачет
5	Волновая оптика. Квантовая природа излучения.	4	3		2	33	38	Текущий контроль, контрольная работа
6	Элементы квантовой физики атомов, молекул и твердого тела	4	1	1	-	33	36	Текущий контроль, контрольная работа
7	Физика атома и атомного ядра	4	1	2		42	44,5	Реферат, контрольная
8	Элементарные частицы. Современная физическая картина мира	4	1	1		42	43,5	работа
	Форма аттестации	4					7	экзамен
	Итого		18/ 0,5	4/ 0,11	22/ 0,61	366/ 10,17	432/ 12	

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

№ п / п	Раздел дисципл ины	Час ы	Тема лекционного занятия	Краткое содержание	Фор миру емые комп етенц ии
1	Физичес кие основы механики	3	Элементы кинематики (1 час)	Физические модели. Пространство и время. Кинематическое описание движения. Скорость и ускорение при криволинейном движении. Нормальное и касательное ускорение. Угловая скорость и угловое ускорение. Вектор угловой скорости. Связь угловой скорости и углового ускорения с линейными скоростями и ускорениями.	ПК-1, ПК-2
			Законы сохранения импульса и энергии (1 час)	Динамика. Современная трактовка законов Ньютона. Первый закон Ньютона и понятие инерциальной системы отсчета. Второй закон Ньютона. Сила как производная импульса. Третий закон Ньютона. Неинерциальные системы отсчета. Закон сохранения импульса как фундаментальный закон природы. Работа и кинетическая энергия. Мощность. Консервативные и неконсервативные силы. Потенциальная энергия. Закон сохранения энергии в механике.	ПК-1, ПК-2
			Твердое тело в механике (0,5 часа)	Момент силы, момент импульса. Момент инерции тела. Уравнения движения и равновесия твердого тела. Закон сохранения момента импульса.	ПК-1, ПК-2
			Колебания и волны. (0,3 часа)	Гармонические колебания. Физический маятник. Сферические и плоские волны. Волновое уравнение. Интерференция, дифракция волн.	
			Элементы релятивистской динамики (0,2 часа)	Преобразования Галилея. Инварианты преобразования. Постулаты специальной теории относительности. Преобразования Лоренца. Следствия из преобразования Лоренца. Релятивистский импульс. Уравнение движения релятивистской частицы. Закон сохранения энергии.	ПК-1, ПК-2
2	Статис тическая физика и термоди намика	3	Макроскопическ ие состояния (0,2 часа)	Динамические и статистические закономерности в физике. Статистический и термодинамический методы. Макроскопические состояния. Тепловое движение. Макроскопические параметры. Уравнение состояния идеального газа. Молекулярно-кинетический смысл температуры.	ПК-1, ПК-2
			Статистические распределения (1 час)	Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Средние скорости теплового движения частиц. Барометрическая формула. Распределение Максвелла-Больцмана.	ПК-1, ПК-2
			Основы термодинамики (1 час)	Первое начало термодинамики. Теплоемкость многоатомных газов. Обратимые и необратимые тепловые процессы. Цикл Карно. Максимальный	ПК-1, ПК-2

		1		ИПП О	
				КПД. Энтропия. Принцип возрастания энтропии. Второе начало термодинамики.	
			Явления	Понятие о физической кинетике. Эффективное	ПК-1, ПК-2
			переноса, фазовое равновесие и	сечение рассеяния. Диффузия. Теплопроводность. Вязкость. Фазы и фазовое превращение. Фазовые диаграммы. Уравнение Клапейрона-Клаузиуса.	11K-2
			фазовые превращения (0,7 часа)	Критическая точка.	
			Особенности твердого состояния вещества (0,1 часа)	Структура твердых тел. Тепловое движение в кристаллах. Теплоемкость кристаллов.	ПК-1, ПК-2
3	Электри чество	3	Предмет классической электродинамик и (1 час)	Идея близкодействия. Электрический заряд и напряженность электрического поля. Закон Кулона. Принцип суперпозиции. Электрическая теорема Гаусса. Работа электростатического поля. Потенциал. Связь потенциала с напряженностью электростатического поля.	ПК-1, ПК-2
			Проводники и диэлектрики в электростатичес ком поле (1 час)	Явление электростатической индукции. Электростатическая защита. Электроемкость. Поляризация диэлектриков. Электрическое смещение. Основные уравнения электростатики для диэлектриков. Энергия системы заряженных проводников. Плотность энергии электростатического поля в диэлектрике.	ПК-1, ПК-2
			Постоянный электрический ток (1 час)	Электрический ток. Сторонние силы. ЭДС. Законы Ома и Джоуля-Ленца в дифференциальной и интегральной форме. Правила Кирхгофа.	ПК-1, ПК-2
4	Электро магнети зм	3	Основы магнитостатики (0,5 часа)	Магнитное поле. Вектор магнитной индукции. Закон Ампера. Магнитное поле тока. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля. Закон полного тока. Движение заряженной частицы в магнитном поле. Ускорители.	ПК-1, ПК-2
			Виток с током в магнитном поле. Магнетики. (1 час)	Рамка с током в однородном магнитном поле. Момент сил, действующих на рамку. Приборы магнито-электричесой системы. Магнитный дипольный момент. Намагниченность вещества. Напряженность магнитного поля. Основные уравнения магнитостатики в веществе. Технические приложения законов магнитостатики. Магнетики: парамагнетики, диамагнетики, ферромагнетики, антиферромагнетики.	ПК-1, ПК-2
			Явление электромагнитно й индукции (1 час)	Явление электромагнитной индукции. Правило Ленца. Самоиндукция, коэффициент самоиндукции. Энергия магнитного поля проводников с током. Объемная плотность энергии магнитного поля	ПК-1, ПК-2
			Уравнения Максвелла (0,5 часа)	Система уравнений Максвелла. Ток смещения. Электромагнитные волны.	ПК-1, ПК-2
5	Волновая оптика. Квантов	3	Интерференция волн. (0,5 часа)	Интерференция монохроматических волн. Применение интерференции в физике и технике. Просветленная оптика.	ПК-1, ПК-2
	ая		Дифракция волн	Явление дифракции света. Простые задачи	ПК-1,

	природа излучени я.		(0,5 часа)	дифракции: дифракция на круглом отверстии;	ПК-2
	л.			дифракция на одной и многих щелях. Дифракционная решетка как спектральный прибор, ее разрешающая способность.	
			Поляризация света (0,5 часа)	Поляризация света при отражении и преломлении на границе диэлектрических сред. Двойное лучепреломление. Интерференция поляризованного света. Вращение плоскости поляризации. Применение в технике.	ПК-1, ПК-2
			Электромагнитн ые волны в веществе (0,5 часа)	Распространение света в веществе. Дисперсия света. Диспергирующие призмы. Поглощение света. Окраска прозрачных и непрозрачных тел.	ПК-1, ПК-2
6			Эксперименталь ное обоснование идей квантовой оптики. (1 час)	Явление фотоэффекта. Фотоэлементы, фотосопротивления, вентильный фотоэффект. Применение в технике. Тепловое излучение. Пирометрия. Основные идеи квантования. Энергия и импульс световых квантов. Давление света. Эффект Комптона.	ПК-1, ПК-2
	Элемент ы квантов	1	Корпускулярноволновой дуализм. (0,5 часа)	Гипотеза де Бройля. Соотношения неопределенностей. Дифракция электронов. Граница применимости ньютоновской механики.	ПК-1, ПК-2
	ой физики атомов, молекул и твердого тела		Элементы квантовой механики. Уравнение Шредингера (0,5 часа)	Задание состояния микрочастицы, волновая функция, её статистический смысл. Уравнение Шредингера. Стационарное уравнение Шредингера, стационарные состояния.	ПК-1, ПК-2
7	Физика атома и атомног о ядра	1,3	Строение атома. (0,8 часа)	Правило частот Бора. Линейчатые спектры атомов. Опыт Франка и Герца.Водородоподобные атомы. Энергетические уровни. Спектральный анализ. Потенциалы возбуждения, ионизации. Принцип Паули. Периодическая система химических элементов.	ПК-1, ПК-2
			Атомное ядро (0,5 часа)	Строение атомных ядер. Феноменологические модели ядра: капельная, оболочная. Ядерные реакции. Радиоактивные превращения атомных ядер. Ядерный реактор. Проблема источников энергии.	ПК-1, ПК-2
8	Элемент арные частицы Совреме нная физическ ая картина мира	0,7	Современная физическая картина мира (0,7 час)	Вещество и поле. Элементарные частицы. Взаимопревращения частиц. Сильное, электромагнитное, слабое и гравитационное взаимодействия. Иерархия взаимодействия. Физическая картина мира как философская категория.	ПК-1, ПК-2

6. Содержание семинарских занятий

Цель проведения семинарских занятий - выявить умение студента самостоятельно изучить теоретический материал, проанализировать, кратко изложить суть проблемы и сделать выводы.

№	Раздел	Часы	Тема семинарского занятия	Формируемые
п/п	дисциплины			компетенции

6	Волновая оптика.	1	Тепловое излучение. Пирометрия. Противоречия	ПК-1,
	Квантовая прирлда		классической физики. Основные идеи квантования.	ПК-2
	излучения.		Фотоэффект. Энергия и импульс	
			световых квантов. Давление света. Эффект Комптона.	
7	Физика атома и	2	Спектры водородоподобных атомов. Пространственное	ПК-1,
	атомного ядра		распределение электронов в атоме водорода. Принцип	ПК-2
			Паули. Периодическая система химических элементов.	
			Спектральный анализ.	
			Строение атомных ядер. Термоядерные реакции.	
			Использование энергии ядерных цепных реакций.	
			Атомная бомба.	
8	Элементарные	1	Космическое излучение. Методы регистрации.	ПК-1,
	частицы.		Свойства элементарных частиц. Сильное,	ПК-2
	Современная		электромагнитное, слабое и гравитационное	
	физическая		взаимодействия.	
	картина мира			

7. Содержание лабораторных занятий

Цель проведения лабораторных занятий - освоение лекционного материала, а также приобретение студентами навыков работы с приборами и оборудованием физической лаборатории, навыков использования различных методик физических измерений и обработки получаемых экспериментальных данных.

Лабораторные работы проводятся в помещениях учебных лабораторий кафедры (Д-110, Д-112, Д-117). Во втором семестре учебным планом предусмотрено 12 часов на проведение лабораторных работ, в третьем — 8 часов, в четвертом — 2. На выполнение и сдачу одной работы дается 4 часа. Во втором семестре студенты должны выполнить 3 лабораторные работы, в третьем — 2, в четвертом — 1 из таблицы, приведенной ниже.

Лаборатория «Механика и молекулярная физика» Д-110 (2 семестр)

№	Раздел	Часы	Наименование лабораторной работы	Формируе
п/п	дисциплины			мые
				компетенц
				ИИ
	Физические	6	104. Изучение законов динамики и кинематики	ПК-1,
	основы механики		поступательного движения на машине Атвуда.	ПК-2
			106. Определение моментов инерции твердых тел методом	
			колебаний	
			108. Определение коэффициентов восстановления и времени	
			соударения упругих шаров.	
			110. Определение логарифмического коэффициента	
			декремента затухания.	
			112. Определение ускорения силы тяжести при помощи	
			математического маятника.	
2	Статистическая	6	115. Определение средней длины пробега и эффективного	ПК-1,
	физика и		диаметра молекул воздуха.	ПК-2
	термодинамика		116. Получение и измерение вакуума.	
			117. Определение отношения теплоемкостей С _р /С _v методом	
			Клемана-Дезорма.	
			119. Определение коэффициента вязкости методом Стокса.	

Лаборатория «Электричество и магнетизм» Д-117 (3 семестр)

№	Раздел	Часы	Наименование лабораторной работы	Формируе
п/п	дисциплины			мые
				компетенц
				ии

3	Электричество	4	208. Градуировка термоэлемента.	ПК-1,
			210. Измерение малых ЭДС с помощью потенциометра	ПК-2
			постоянного тока	
			212. Снятие анодной характеристики двуэлектродной лампы.	
			216. 216а. Изучение работы полупроводниковых	
			выпрямителей.	
			217. Изучение зависимости сопротивления металлов и	
			полупроводников от температуры.	
			226. Определение сопротивления проводников мостом	
			постоянного тока типа МВД-47.	
4	Электромагнетиз	4	220. Определение отношения заряда электрона к его массе	ПК-1,
	\mathcal{M}		методом магнетрона.	ПК-2
			225. Определение индуктивности катушки методом	
			амперметра и вольтметра.	
			230. Определение горизонтальной составляющей магнитного	
			поля Земли.	

Лаборатория «Оптика и атомная физика» Д-112 (4 семестр)

№ п/п	Раздел дисциплины	Часы	Наименование лабораторной работы	Формируе мые компетенц ии
5	Волновая оптика. Квантовая природа излучения.	2	 301. Измерение показателя преломления жидкостей рефрактометром Аббе. 302. Определение радиуса кривизны линзы с помощью колец Ньютона. 307. Определение длины волны света с помощью дифракционной решетки. 305.Экспериментальная проверка закона Малюса 308. Определение концентрации раствора сахара поляриметром. 308a. Магнитное вращение плоскости поляризации (эффект Фарадея). 	ПК-1, ПК-2

8. Самостоятельная работа бакалавра (366 часов)

No	Раздел дисциплины,	Час	Форма СРС	Формируемые
п/	темы, выносимые на	ы		компетенции
П	самостоятельную работу			
1	Физические основы механики	81	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
2	Статистическая физика и термодинамика	81	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
3	Электричество	27	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
4	Электромагнетизм	27	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
5	Волновая оптика. Кваетовая природа излучения.	33	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
6	Элементы квантовой физики атомов, молекул и твердого тела	33	Проработка лекционного материала, выполнение контрольной работы, подготовка к лабораторным работам, оформление отчетов	ПК-1, ПК-2
7	Физика атома и атомного ядра	42	Проработка лекционного материала, выполнение контрольной работы, написание реферата	ПК-1, ПК-2

8	Элементарные частицы. Современная физическая картина мира	42	Проработка лекционного материала, выполнение контрольной работы, написание реферата	ПК-1, ПК-2
---	---	----	---	---------------

9. Использование рейтинговой системы оценки знаний.

Оценка знаний обучающихся производится на основании «Положения о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» утвержденного решением УМК Ученого совета ФГБОУ ВПО «КНИТУ». Согласно «Положению» рейтинг формируется из двух основных частей: первая часть — текущий рейтинг, который оценивается в баллах (от 36 до 60 баллов), полученных в течение семестра, вторая часть — баллы, полученные на экзамене (от 24 до 40 баллов).

При изучении дисциплины предусматривается:

1. Во втором семестре - контрольная работа, лабораторные работы и экзамен. Эти контрольные точки имеют минимальное и максимальное количество баллов (см. таблицу).

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Контрольная работа	1	6	10
Лабораторная работа	3	30	50
Экзамен		24	40
Итого:		60	100

2. В третьем семестре - контрольная работа, лабораторные работы и зачет.

Оценочные средства	Кол-во	Міп, баллов	Мах, баллов
Контрольная работа	1	6	10
Лабораторная работа	2	30	50
Зачет		24	40
Итого:		60	100

3. В четвертом семестре - контрольная работа, лабораторная работа, реферат и экзамен.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Контрольная работа	1	6	10
Лабораторная работа	1	24	40
Реферат	1	6	10
Экзамен		24	40
Итого:		60	100

10. Информационно-методическое обеспечение дисциплины.

10.1 Основная литература

При изучении дисциплины «Физика» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Количество экземпляров
1. Калашников Н.П. Физика. Интернеттестирование базовых знаний; учебное пособие / Н.П.Калашников, Н.М. Кожевников. — Электрон. ДанСпб.: Лань, 2009. — 150 с.	1593. в УНИЦ КНИТУ
2. Старостина И.А., Бурдова Е.В., Кондратьева О.И., Казанцев С.А., Поливанов М.А. Краткий курс общей физики. Учебное пособие/ Казань: Изд-во КНИТУ 2014	70 экз. в УНИЦ КНИТУ
3. Волькенштейн В.С. Сборник задач по общему курсу физики / Волькенштейн В.ССпб.: Книжный мир, 2007г328 с.	1057 экз. в УНИЦ КНИТУ
4. Старостина И.А., Бурдова Е.В., Сальманов Р.С Краткий курс общей физики. для бакалавров. Учебное пособие/ Казань: Изд-во КНИТУ 2016	62 экз. в УНИЦ КНИТУ

10.2. Дополнительная литература

Дополнительные источники информации	Кол-во экз.
1. Чуйкова А.И. Физика. Физические основы механики. Молекулярная	http://www.kstu.ru/lleveltest.jsp?idpa
физика и термодинамика: Методические указания к контрольным работам.	
Метод. указ, доп. и испр. / А.И. Чуйкова и др. Казан. гос. технол. ун-т.	свободный
Казань 2012г 76 с.	
2. Чуйкова А.И. Физика. Электростатика постоянный ток,	http://www.kstu.ru/lleveltest.jsp?idpa
электромагнетизм, электромагнитные колебания и волны. Контрольные	rent=1817 ЭБ каф. физики. Доступ
задания для студентов заочной формы обучения. / А.И. Чуйкова и др.	свободный
КНИТУ Казань, 2012г. – 76с.	
3. Бурдова Е.В. Физика. Волновая оптика. Элементы атомной физики и	http://www.kstu.ru/lleveltest.jsp?idpa
квантовой механики: Методические указания к контрольным работам /	rent=1817 ЭБ каф. физики. Достуг
Е.В. Бурдова, Чуйкова и К, Казань 2012г. 80 с	свободный

10.3 Электронные источники информации

При изучении дисциплины «Физика» предусотрено использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ http://ruslan. kstu.ru
- 2.Электронная библиотека УНИЦ КНИТУ режим доступа: http://ft.kstu.ru/ft/
- 3. Источники в электронном виде, имеющиеся в Интернет в свободном доступе.
- elibrary.ru;
- -www.lib.pu.ru;
- -http://www.nlr.ru;

10.4. Современные профессиональные базы данных и информационные справочные системы.

https://www.lektorium.tv/:

http://universarium.org/

academiait.ru

https://openedu.ru

Согласовано:

Зав.сектором ОКУФ

Усольцева И.И.

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины.

Материально-техническое обеспечение дисциплины включает:

- 1. Персональные компьютеры 18 шт.
- 2. Осциллографы H3013, C1-5, C1-117/1 9 шт.
- 3. Мост постоянного тока МО-47, МВЛ-47 5 шт.
- 4. Генератор сигналов низкочастотный ГЗ-112/1, ГЗ-34 5 шт.
- 5. Потенциометр постоянного тока ПП-63 4 шт.
- 6. Преобразователь импульсов ПИ/ФПЗ-09 4 шт.
- 7. Универсальный монохроматор УМ-2 2 шт.
- 8. Спектрометры C/1П-1, C17 3 шт.
- 9.Рефрактометр ИРФ-46А 3 шт.
- 10. Измеритель контактный горизонтальный ИКГ-I857 2 шт.
- 11. Интерферометр Рэлея 2 шт.
- 12. Амперметры, вольтметры 24 шт.
- 13. Столы 35 шт.,
- 14. Проектор 1 шт.,
- 15. Интерактивная доска 1 шт.

Помещения для проведения компьютерных лабораторных работ оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационную среду КНИТУ.

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «физика»: MS office 2007 Russian

13. Образовательные технологии

В соответствии с ФГОС по направлению 15.03.02 «Технологические машины и оборудование» учебным планом предусмотрено занятий в интерактивной форме в объеме 12 часов.

Форма проведения лекции — «лекция-визуализация», «лекция-беседа», лекции on-line. Система дистанционного обучения.

Форма проведения практических и лабораторных занятий – «групповое обсуждение», «работа в малых группах».