Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

> **УТВЕРЖДАЮ** Проректор по УР А.В. Бурмистров 2018 г.

РАБОЧАЯ ПРОГРАММА

Б1.В.ДВ.8.2 Переработка, утилизация конверсионные технологии энергонасыщенных материалов

Специальность

подготовки:

18.05.01

«Химическая

технология

энерго-

насыщенных материалов и изделий»

Специализация: «Химическая технология органических соединений азота»,

Квалификация выпускника: ИНЖЕНЕР

Форма обучения: ОЧНАЯ

Институт, факультет: ИХТИ, ФЭМИ

Кафедра-разработчик рабочей программы:

«Оборудования химических

Курс, семестр: Курс пятый, семестр А

	Часы	Зачетные
Лекции	36	единицы
Практические занятия	36	1
Семинарские занятия	-	-
Лабораторные занятия	-	-
Самостоятельная работа	72	2
Форма аттестации	Зачет с оценкой	
Beero	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования №1176 от 12.09.2016.

по направлению: <u>18.05.01</u> «<u>Химическая технология энергонасыщенных материалов и изделий</u>» для специализации: «Химическая технология органических соединений азота», на основании учебного плана набора обучающихся 2018 г.

Разработчик программы профессор каф. ОХЗ

А.Ф. Махоткин (подпись) (И.О. Фамилия)

Рабочая программа рассмотрена и одобрена на заседании кафедры OX3

Протокол от 31.08

20<u>/8</u> Γ.

No 1

Зав. кафедрой ОХЗ

А.Ф. Махоткин

УТВЕРЖДЕНО

Протокол заседания методической комиссии ИХТИ от /2 09 20 18 г. № 8

Председатель комиссии профессор

Ято (полись)

В. Я. Базотов (И. О. Фамилия)

Начальник УМЦ

Л. А. Китаева (И. О. Фамилия)

1. Цели освоения дисциплины

Целями освоения дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» являются:

- а) формирование знаний о энегонасыщенных материалах и способах их получения;
- б) способность решать проблемы переработки и утилизации отработанных энергонасыщенных материалов, отработанных кислот, бракованных энергонасыщенных материалов и изделий на их основе.
- в) способность прогнозировать принципиально новые способы конверсии технологии производства энергонасыщенных материалов.

2. Место дисциплины (модуля) в структуре образовательной программы (OП)

Дисциплина «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» относится к вариативной части ООП и формирует у специалистов по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» набор специальных знаний и компетенций, необходимых для выполнения производственнотехнологической, организационно-управленческой, научноисследовательской, проектной, экспертной деятельности.

Для успешного освоения дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» специалист по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» должен освоить материал предшествующих дисциплин:

- а) Математика;
- б) Физика;
- в) Химия;
- г) Теоретическая механика;
- д) Сопротивление материалов;
- е) Детали машин;
- ж) Процессы и аппараты химической технологии;
- з) Гидравлика

Знания, полученные при изучении дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» могут быть использованы при прохождении производственной практики (практики по получению профессиональных умений и опыта профессиональной деятельности), преддипломной практики и выполнении выпускных квалификационных работ по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- 1. ПК-15 способностью проектировать технологические процессы (в составе авторского коллектива), в том числе с использованием автоматизированных систем подготовки производства;
- 2. ПСК-1.3 готовностью синтезировать и исследовать физикохимические, взрывчатые и физико-механические свойства индивидуальных и смесевых взрывчатых материалов.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) технологии производства энергонасыщенных материалов;
- б) перечень основных отходов производства энергонасыщенных материалов и способы их переработки;
- в) перечень основных технологических процессов, которые могут использованы для конверсии производств;
 - г) способы реконструкции действующих производств для конверсии;
- д) перспективы новых способов переработки сырья для производства энергонасыщенных материалов;
- е) технологию изготовления новых видов продукции на основе модернизации действующих производств энергонасыщенных материалов;
- ж) основы современных зарубежных технологий и пути их полезного использования в производстве энергонасыщенных материалов.

2) Уметь:

- а) раскрывать важнейшие закономерности процессов.
- б) применять знания на практике;
- в) создавать экспериментальные, опытные и опытно-промышленные установки;
- г) обобщать результаты эволюционного развития технологических процессов и прогнозировать новые технологии;
- д) решать важнейшие экологические проблемы производства энергонасыщенных материалов;
- е) принимать решения по замене действующего оборудования и по созданию новых аппаратов и технологий в особый период.

3) Владеть:

- а) методологией опережения лучших научно-технических достижений в области переработки, утилизации энергонасыщенных материалов и конверсионных технологий;
- б) методологией раскрытия закономерностей механизма и кинетики простых и сложных гетерогенных физико-химических процессов;
- в) информацией о зарубежных технологиях, оборудовании и катализаторах.

4. Структура и содержание дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 академических часа.

	Раздел дис- циплины		Виды учебной работы (в часах)			оты	Информационные и другие образовательные технологии, используемые при осу-	Оценочные средства для проведения про-
№ п/п		Kypc	Лекция	Семинар (прак тическое заня тие)	Лабораторные работы	CPC	ществлении образо- вательного процесса	межуточной аттестации по разделам
1	Основы получения, переработки и конверсии производства исходного сырья для изготовления энергонасыщенных материалов.	5	12	-	-	24	При чтении лекций используется проектор и ноутбук	Реферат, контрольная работа
2	Основы получения, переработки и конверсии производства нитратов целлюлозы и порохов на ее основе	5	12	-	-	24	При чтении лекций используется проектор и ноутбук	Реферат, практиче- ское занятие, контрольная работа
3	Основы получения, переработки и конверсии производства ВВ	5	12	30	-	24	При чтении лекций используется проектор и ноутбук	практиче- ское занятие, контрольная работа
	ИТОГО:		36	36	-	72		Зачет с оценкой

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№ п/п	Раздел дисцип- лины	Тема лекци- онного заня- тия	Часы	Краткое содержание	Форми- руемые компе- тенции
		Тема 1. Основы получения и переработки целлюлозы	2	Описание свойств целлюлозы, технологии ее получения, переработки. Виды получаемого сырья.	ПК-15 ПСК-1.3
	Основы получе- ния, пе-	Тема 2. Основы получения и переработки толуола	2	Описание свойств толуола, технологии его получения и преработки. Описание режимов нитрации и стабильности получаемого продукта.	ПК-15 ПСК-1.3
1	реработки и конверсии про- изводства исходного сырья для изготов-	Тема 3. Основы получения и переработки формальдегида и уротропина	2	Описание свойств формальдегида, технологии его получения, переработки. Описание свойств уротропина, технологии его получения, переработки.	ПК-15 ПСК-1.3
	ления энергона- сыщен- ных мате-	Тема 4. Основы получения и переработки пентарритрита	2	Описание свойств пентаэритрита, технологии его получения, переработки.	ПК-15 ПСК-1.3
	риалов	Тема 5. Основы получения и переработки азотной и серной кислот	4	Описание свойств азотной кислоты, технологии ее получения, переработки. Описание свойств серной кислоты, технологии ее получения, переработки	ПК-15 ПСК-1.3
2	Основы получения, переработки и конверсии производства	Тема 6. Основы получения и переработки и конверсии производства высокоазотного пироксилина	6	Описание свойств пироксилина, технологии его получения и переработки на стадиях нитрации, вытеснения кислот, варки и стабилизации.	ПК-15 ПСК-1.3
	нитратов целлюло- зы и по- рохов на ее основе	Тема 7. Основы получения и переработки и конверсии производства порохов	6	Виды порохов и их назначение. Технология получения пироксилиновых и коллоксилиновых порохов. Трубчатый канальный порох.	ПК-15 ПСК-1.3
3	Основы получения, переработки и конверсии производства	Тема 8. Основы получения и переработки и конверсии производства тротила	4	Описание свойств тротила, технологии его получения и переработки.	ПК-15 ПСК-1.3

BB	Тема 9. Ос-		Описание свойств гексогена, тех-	
DD	новы получе-		нологии его получения и перера-	
	ния и перера-		ботки.	ПК-15
	ботки и кон-	2	001ки.	ПСК-1.3
		2		11CK-1.5
	версии произ-			
	водства гек-			
	согена			
	Тема 10. Ос-		Описание свойств ТЭНа, техноло-	
	новы получе-		гии его получения и переработки.	ПК-15
	ния и перера-	2		ПСК-1.3
	ботки и кон-	4		11010-1.5
	версии произ-			
	водства ТЭНа			
	Тема 11. Ос-		Описание свойств октогена, техно-	
	новы получе-		логии его получения и переработки.	
	ния и перера-		J 1 1	ПК-15
	ботки и кон-	2		ПСК-1.3
	версии произ-			
	водства окто-			
	гена			
	Тема 12. Ос-		Описание свойств тетрила, техно-	
	новы получе-		логии его получения и переработки.	
	ния и перера-		логии его получении и перераоотки.	ПК-15
	ботки и кон-	2		ПСК-1.3
				11CK-1.5
	версии произ-			
	водства тет-			
	рила			

6. Содержание семинарских, практических занятий (лабораторного практикума)

№ п/п	Раздел дисцип- лины	Тема прак- тического занятия	Часы	Краткое содержание	Формируе- мые компе- тенции
1	Основы получения, переработки и конверсии производства нитратов целлюлозы и порохов на ее основе	Тема 1. Расчет производства порохов	6	Описание свойств порохов, технологии их получения и переработки. Расчет материального и теплового баланса технологии нитрации целлюлозы и регенерации отработанных кислот.	ПК-15 ПСК-1.3 ПК-15 ПСК-1.3
2	Основы получе- ния, пе- реработки	Тема 2. Расчет производства тротила	8	Описание свойств тротила, технологии его получения и переработки. Расчет материального и теплового баланса технологии.	ПК-15 ПСК-1.3

сии изво,	нвер- про- дства ВВ	Тема 3. Расчет производства гексогена	6	Описание свойств гексогена, технологии его получения и переработки. Расчет материального и теплового баланса технологии	ПК-15 ПСК-1.3
		Тема 4. Расчет производства ТЭНа	8	Описание свойств ТЭНа, технологии его получения и переработки. Расчет материального и теплового баланса технологии.	ПК-15 ПСК-1.3
		Тема 5. Расчет производства октогена	8	Описание свойств октогена, технологии его получения и переработки. Расчет материального и теплового баланса технологии.	ПК-15 ПСК-1.3
		Тема 6. Расчет чет производства водства тетрила	6	Описание свойств тетрила, технологии его получения и переработки. Расчет материального и теплового баланса технологии.	ПК-15 ПСК-1.3

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Учебным планом по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» проведение лабораторных занятий не предусмотрено.

8. Самостоятельная работа студента

№ п\п	Темы, выносимые на самостоятельную работу	ч _{а-} сы	Форма СРС	Формируе- мые компе- тенции
1	Переработка и конверсия производства целлюлозы	8	Выполнение до- машних заданий. Подготовка высту- плений с реферата- ми.	ПК-15 ПСК-1.3
2	Переработка и конверсия производства серной кислоты	8	Выполнение до- машних заданий. Подготовка высту- плений с реферата- ми. Подготовка к лабо- раторной работе и оформление отчёта.	ПК-15 ПСК-1.3

3	Переработка и конверсия производства азотной кислоты	8	Выполнение домашних заданий. Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
4	Переработка и конверсия производства порохов	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
5	Переработка и конверсия производства тротила	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
6	Переработка и конверсия производства гексогена	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
7	Переработка и конверсия производства ТЭНа	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
8	Переработка и конверсия производства октогена	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3
9	Переработка и конверсия производства тетрила	8	Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ПК-15 ПСК-1.3

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» используется балльно-рейтинговая система. Рейтинговая оценка

формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в <u>Положении ФГБОУ ВО «КНИТУ» от 04.09.2017 "О балльнорейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса"</u>.

Минимальное значение текущего рейтинга не менее 60 баллов (при условии, что выполнены все контрольные точки), максимальное значение - 100 баллов.

По дисциплине в десятом семестре предусмотрено выполнение шести практических работ, реферат и контрольная работа. За все эти виды работ студент может набрать 100 баллов, которые входят в семестровую составляющую, которые распределяются по возможности равномерно по всему семестру. Максимальное количество баллов за семестр — 100. Минимальное количество баллов — 60 (при условии, что выполнены все контрольные точки).

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Практическая работа	6	6*6=36	6*10=60
Контрольная работа	1	15	25
Реферат	1	9	15
Итого:		60	100

После окончания семестра обучающийся, набравший менее 60 баллов, считается неуспевающим, не получившим зачет.

Пересчет итоговой суммы баллов за семестр, где предусмотрен зачет, в традиционную и международную оценку

Оценка	Итоговая сумма баллов	Оценка (ECTS)
5 (отлично)	87-100	А (отлично)
	83-86	В (очень хорошо)
4 (хорошо)	78-82	С (хорошо)
	74-77	D (удовлетворительно)
3 (удовлетворительно)	68-73	
	60-67	Е (посредственно)
2 (неудовлетворительно),	Ниже 60 баллов	F (неудовлетворительно)
(не зачтено)		

10. Учебно-методическое и информационное обеспечение дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов»

10.1 Основная литература

При изучении дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов», в качестве основных

источников информации, рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
Илюшин, М.А. Промышленные взрывча-	ЭБС «Лань»
тые вещества [Электронный ресурс] : учеб.	https://e.lanbook.com/book/95
пособие / М.А. Илюшин, Г.Г. Савенков,	133 доступ из любой точки
А.С. Мазур. — Электрон. дан. — Санкт-	интернет после регистрации
Петербург : Лань, 2017. — 200 с.	с ІР адресов КНИТУ
Ситкин, А.И. Технология и оборудование	ЭБС «Лань»
производств бризантных взрывчатых ве-	https://e.lanbook.com/book/13
ществ [Электронный ресурс] : учеб. посо-	341 доступ из любой точки
бие — Электрон. дан. — Казань : КНИТУ,	интернет после регистрации
2011. — 147 c.	с ІР адресов КНИТУ
Герке, Л.Н. Введение в специальность	ЭБС «Лань»
«Химическая переработка древесины»	https://e.lanbook.com/book/13
[Электронный ресурс] : учеб. пособие —	268доступ из любой точки
Электрон. дан. — Казань : КНИТУ, 2010. —	интернет после регистрации
127 c.	с ІР адресов КНИТУ
Халитов, Р.А. Технология регенерации от-	ЭБС «Лань»
работанных кислот в вихревых аппаратах	https://e.lanbook.com/book/10
[Электронный ресурс] : монография / Р.А.	2108 доступ из любой точ-
Халитов, А.Ф. Махоткин. — Электрон. дан.	ки интернет после регист-
— Казань : КНИТУ, 2015. — 384 c.	рации с ІР адресов КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется использовать следующую литературу:

Дополнительные источники информа-	Кол-во экз.
ции	
Гунцов, А.В. Математическое моделиро-	ЭБС «Лань»
вание процессов электронакопления микро-	https://e.lanbook.com/book/55
количеств осадка, осложненных химиче-	427 доступ из любой точки
скими реакциями [Электронный ресурс] :	интернет после регистрации
монография / А.В. Гунцов, Л.В. Гунцова,	с ІР адресов КНИТУ
А.А. Шилов. — Электрон. дан. — Тюмень :	
ТюмГНГУ, 2013. — 80 с.	
Самойлов, Н.А. Примеры и задачи по кур-	ЭБС «Лань»
су "Математическое моделирование хими-	https://e.lanbook.com/book/37
ко-технологических процессов" [Электрон-	356 доступ из любой точки
ный ресурс] : учеб. пособие — Электрон.	интернет после регистрации
дан. — Санкт-Петербург: Лань, 2013. — 176	с ІР адресов КНИТУ

c.	
Натареев, С.В. Моделирование и расчет	ЭБС «Лань»
процессов химической технологии [Элек-	https://e.lanbook.com/book/45
тронный ресурс] : учеб. пособие — Элек-	02 доступ из любой точки
трон. дан. — Иваново: ИГХТУ, 2008. — 144	интернет после регистрации
c.	с ІР адресов КНИТУ

10.3 Электронные источники информации

При изучении дисциплины «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов» в качестве электронных источников информации, рекомендуется использовать следующие источники:

1. Электронный каталог УНИЦ КНИТУ – Режим доступа: https://ruslan.kstu.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРОТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНИЕ УРЕЖДЕНИЕ ВЫСШЕГО

Учебно научный информационный центр

2. ЭБС «Лань» - Режим доступа: https://e.lanbook.com/

Согласовано:

Зав. Сектором комплектования технологический университеть

Усольцева И.И.

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины (модуля)

В качестве материально-технического обеспечения используется:

- аудитория И-336, учебная аудитория для проведения лекционных, практических занятий и занятий семинарского типа;

Оснащение: столы, стулья для обучающихся; стол, стул для преподавателя; доска настенная для мела.

Оборудование: экран; проектор (Epson EB-X49); ноутбук (ПЭВМ Pronfhter Tech IT Mobil-K MAPM).

- И-351а - учебная аудитория для проведения лекционных, практических занятий и лабораторных занятий (компьютерный класс).

Оснащение: столы, стулья для обучающихся; стол, стул для преподавателя; доска настенная магнитно-маркерная — 1 шт., конференц-стол — 1 шт.

Оборудование: экран переносной; проектор (Epson EB-X49); ноутбук (ПЭВМ Pronfhter Tech IT Mobil-K MAPM), компьютер (AMD Athl, Компьютер на базе процессора AMD Athlon II X2 250 3.0 $\Gamma\Gamma$ ц) – 11 шт.

Научное ПО: PTC Mathcad Education University Edition, Mathematica Professional Version Educational, ANSYS Academic Research Mechanical and CFD; Офисные и деловые программы: ABBYY FineReader 9.0 проф, MS Office 2007 Russian, MS Office 2007 Professional Russian, MS Office 2010-2016 Standard; ПО для перевода: ABBYY Lingvo x3 Ангийская версия, ABBYY Lingvo x3 Европейская версия; САПР: Аскон Компас 3D v16; «Консультант-Плюс»; Техэксперт; 7Zip; Notepad++; Виртуальная обучающая среда MOODLE

13. Образовательные технологии

Удельный вес занятий по дисциплине «Переработка, утилизация и конверсионные технологии энергонасыщенных материалов», проводимых в интерактивных формах, составляет 15 академических часов, из них: 6 часов – практические занятия, 9 часов – лекционные занятия.

Интерактивные формы проведения учебных занятий:

- изучение и закрепление нового материала на интерактивной лекции (лекция беседа, лекция дискуссия);
 - творческие задания (расчетная работа, контрольная работа);
 - технология проблемного обучения;
 - технология визуализации учебной информации (натурные образцы, раздаточные материалы);

информационные технологии (использование разработанных на кафедре методических разработок).

В случае возникновения вопросов при подготовке к выполнению практических работ, подготовке контрольной работе, вне аудиторных часов, студент может обратиться к преподавателю удаленно по электронной почте.