На правах рукописи

Def

Гималдинов Дамир Ризванович

ПОЛУЧЕНИЕ И СВОЙСТВА ВЫСОКОМОЛЕКУЛЯРНОГО НЕОДИМОВОГО ЦИС-1,4-ПОЛИБУТАДИЕНА, НАПОЛНЕННОГО ВЫСОКОАРОМАТИЧЕСКИМИ НЕКАНЦЕРОГЕННЫМИ МАСЛАМИ

2.6.11. Технология и переработка синтетических и природных полимеров и композитов

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в ФГБОУ ВО «Казанский национальный исследовательский технологический университет» и ПАО «Нижнекамскнефтехим»

Научный руководитель: доктор технических наук, профессор

Вольфсон Светослав Исаакович

Официальные оппоненты:

Карманова Ольга Викторовна, доктор технических наук, профессор, ФГБОУ ВО «Воронежский государственный университет инженерных технологий», зав. кафедры технологии органических соединений и переработки полимеров

Новопольцева Оксана Михайловна, доктор технических наук, профессор, Волжский политехнический институт (филиал) ФГБОУ ВО «Волгоградский государственный технический университет», профессор кафедры химической технологии полимеров и промышленной экологии

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА – Российский технологический университет»

Защита состоится «13» марта 2024 г. в ____ час. на заседании диссертационного совета 24.2.312.09, созданного на базе ФГБОУ ВО «Казанский национальный исследовательский технологический университет» по адресу: 420015, г. Казань, ул. К. Маркса, д. 68, зал заседаний Ученого совета, A-330.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Казанский национальный исследовательский технологический университет» и на сайте https://www.kstu.ru/servlet/contentblob?id=481954

Отзывы на автореферат и диссертацию в двух экземплярах с подписями, заверенными печатью, просим направлять по адресу: 420015, г. Казань, ул. К. Маркса, д. 68, ученый совет, e-mail: upak@kstu.ru

В отзыве указываются фамилия, имя, отчество (полностью), ученая степень с указанием специальности, ученое звание, наименование организации и должность лица, представившего отзыв, с указанием структурного подразделения, почтовый адрес, телефон и адрес электронной почты (при наличии) (п. 28 Положения о присуждении ученых степеней)

Автореферат разослан	«»	 2023 г.

Ученый секретарь диссертационного совета, доктор химических наук

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В нашей стране первыми каучуками, полученными в промышленных условиях, были бутадиеновые, с использованием катализатора на основе натрия. На сегодняшний день для синтеза стереорегулярных полибутадиенов применяются каталитические комплексы на основе переходных металлов и лантаноидов. Наибольшее распространение получил полибутадиен, полученный на «неодимовом» катализаторе, преимуществами которого являются высокое содержание звеньев в положении цис-1,4- (более 97% мас.), отсутствие олигомеров и металлов переменной валентности в составе. Также неодимовый полибутадиен обладает линейной структурой, при этом молекулярномассовое распределение (ММР) полимера меняется в диапазоне от 2,4 до 4,0.

Современная промышленность диктует жёсткие требования к продукции шинной по снижению топливных потерь, свободных значительным образом, зависят числа OT макромолекулярных цепей. Снижение содержания последних в каучуке приводит к улучшению динамических показателей резин на его основе. необходимым условием является молекулярный массы полимера и снижение индекса полидисперсности. Одним из способов достижения этого - синтез полимера изначально вязкости по Муни. Вместе с тем подобные высокой характеризуются повышенным уровнем вязкости резиновой смеси, что создаёт трудности при переработке, а также сопутствующие повышенные энергозатраты в процессе резиносмешения. Методом структурной модификации полимеров, облегчающим их переработку, пластификация, т. е. введение в полимер различных пластификаторов, улучшающих эластичность и морозостойкость материала.

В производства настоящее время, ДЛЯ современных высокоэффективных шин. перспективным является использование синтетических каучуков, в том числе и «неодимового» полибутадиена с повышенной вязкостью по Муни и пластифицированных экологически безопасными маслами следующих типов: обработанных ароматических экстрактов (TDAE), изготовленных с использованием метода двойной экстракции; среднего технологического масла (MES), получаемого из экстрагированного или гидрогенизированного сольвата, растительных масел марок Phytonorman 212 и Phytonorman 213. Указанные масла соответствуют требованиям по канцерогенности, содержание в них полициклических ароматических углеводородов (ПАУ) составляет менее 3% мас.. В виду этого применение данных масел в процессе наполнения каучука, в частности цис-1,4-полибутадиена, заслуживает свое внимание. В качестве обоснования можно отметить тот факт, что в нашей стране данной тематике было уделено мало внимания. На сегодняшний день практически отсутствуют работы, посвященные маслонаполнению неодимового полибутадиена.

Исходя из выше сказанного, очевидно, что тематика исследования является актуальной, а предмет исследования — маслонаполненный неодимовый цис-1,4-полибутадиен — представляет интерес для шинной промышленности. Появляется возможность использовать без изменения аппаратурного оформления стадии резиносмешения новые марки стереорегулярного полибутадиена с изначально высокой вязкостью по Муни. Кроме того, определение принципиальных физико-механических и пластоэластических показателей, полученных вулканизатов, в сравнении с промышленно выпускаемым серийным и импортным аналогом позволит сделать выводы о перспективах улучшения качества готовых изделий при использовании данного каучука.

Степень разработанности темы исследования. Улучшение технологических свойств цис-1,4-полибутадиена подробно изучено в работе Н.Н. Мотовиловой, Н.В. Голубевой. В частности, проведен обзор мировых патентов по маслонаполнению цис-1,4-полибутадиена, результате которого отмечены некоторые разногласия относительно природы наиболее подходящего масла, рассмотрено введение масел в раствор полимера и саже-каучуковую смесь. В работе М.М. Агаева, Ю.Г. Кораблева, Л.С. Ясенковой, В.Г. Евстратова изучены свойства маслонаполненных каучуков СКД с различным содержанием масла ПН-6, но имеющих одинаковую вязкость по Муни. В результате резиновые смеси на основе маслонаполненных цис-1,4-бутадиеновых каучуков имели лучшие пластоэластические свойства в отличии от резиновой смеси с применением серийного каучука СКД, особенно по показателям вальцуемости И эластического восстановления. Вулканизаты маслонаполненных каучуков имели повышенное сопротивление раздиру, низкое теплообразование, а также повышенную эластичность.

Стоит отметить, что в ранее проведенных исследованиях в большинстве случаев было уделено внимание наполнению канцерогенными высокоароматическими маслами, в частности марки ПН-6, которое, не соответствует современным требованиям, касаемых экологических норм.

На основании изложенного, можно сделать вывод о том, что на сегодняшний день проведенные ранее работы утратили свою актуальность. Кроме того, обращает на себя внимание недостаточная полнота ранних исследований, в частности изучено влияние масел лишь на технологические свойства и физико-механические показатели вулканизатов на основе маслонаполненных бутадиеновых каучуков. При этом отсутствуют работы по изучению влияния состава масла и молекулярных характеристик исходного каучука на пластифицирующую способность масла и их сродство.

Цели и задачи исследования. Улучшение технологических и упруго-гистерезисных свойств резиновых смесей на основе высокомолекулярного цис-1,4узкодисперсного «неодимового» полибутадиена путем высокоароматическими наполнения неканцерогенными отечественными маслами.

Для достижения поставленной цели решались следующие задачи:

- –получение линейного высокомолекулярного узкодисперсного «неодимового» цис-1,4-полибутадиена, наполненного высокоароматическими неканцерогенными маслами отечественного производства.
- определение оптимальных типов и дозировок масел с целью получения маслонаполненного «неодимового» цис-1,4-полибутадиена и вулканизатов на его основе, характеризующихся улучшенными технологическими, физико-механическими и упруго-гистерезисными свойствами;
- исследование совместимости масел с каучуком, в зависимости от молекулярного строения каучука, типа масла и его состава;
- исследование физико-механических показателей полученных резин на основе маслонаполненных «неодимовых» цис-1,4-полибутадиенов в сравнении с ненаполненными отечественными серийными образцами, а также зарубежным аналогом.

Объектами исследования являлись цис-1,4-полибутадиены, полученные на основе каталитического комплекса с применением неодеканоата неодима, ДИБАГ (диизобутилалюминийгидрид), ЭАСХ (этилалюминийсесквихлорид) методом растворной полимеризации в среде гексанового растворителя с различной микроструктурой и молекулярными характеристиками, наполненные высокоароматическими и растительными маслами производства АО «Управляющая компания Биохимического холдинга ОРГХИМ». В качестве нефтяных масел применялись «Norman 346» (TDAE), «Norman 132» (MES), «Norman 239» (NLP), «Norman 583» (TRAE). В качестве масел растительного происхождения применялись Phytonorman 212 и Phytonorman 213.

Методология и методы исследования. Методологической основой для синтеза каучука является опыт отечественных и иностранных исследователей в области синтеза высокомолекулярных соединений. В ходе современные проведения исследований использованы исследования, инфракрасная спектроскопия Фурьетакие как: c 13C преобразованием, гель-проникающая хроматография, спектроскопия. Оценка плотности пространственной сетки исследуемых образцов проведена методом равновесного набухания. Применены стандартные методы определения физико-механических теплообразования, сопротивления раздиру, износостойкости, сцепления на мокрой и заснеженной дороге, потери на качения (гистерезисные потери).

Достоверность результатов и обоснованность выводов обеспечены большим числом проводимых экспериментов, их воспроизводимостью и квалифицированным использованием современных физико-химических и физико-механических методов исследования.

Научная новизна исследования.

Синтезирован каталитический комплекс на основе соединений неодима, отличающийся от промышленного пониженной долей алюмоорганических соединений в своем составе, что позволило получить линейный высокомолекулярный узкодисперсный неодимовый цис-1,4-полибутадиен (СКДН).

Установлено с использованием методов спектроскопии ядерного магнитного резонанса, хроматографии и кинетики набухания нефтяных масел MES (mild extract solvate – сольват слабой экстракции) и TDAE (treatment distillate aromatic extract очищенный дистиллятный ароматический экстракт), что различная совместимость указанных масел с высокомолекулярным «неодимовым» бутадиеновым каучуком зависит не только от общего содержания ароматических углеводородов в них, но и от соотношения ароматических фракций, имеющих различную молекулярную структуру, повышаясь при увеличении ДОЛИ ароматических углеводородов и смол в составе нефтяных масел.

Установлено влияние полидисперсности каучука СКДН на взаимодействие с высокоароматическими маслами MES и TDAE, заключающееся в увеличении дозировки указанных масел при введении в каучук с уменьшением коэффициента полидисперсности, что позволило получить резины с улучшенными физико-механическими и упругогистерезисными свойствами.

Теоретическая и практическая значимость.

Решена комплексная задача по получению линейного высокомолекулярного узкодисперсного неодимового цис-1,4-полибутадиена, наполненного неканцерогенными маслами, заключающаяся в варьировании мольного соотношения алюмоорганической составляющей к неодиму в процессе синтеза каталитического комплекса.

Разработан процесс получения новой марки высокомолекулярного СКДН с узкой полидисперсностью, наполненного экологическими высокоароматическими маслами отечественного производства. Установлено, что резины на основе синтезированных каучуков имеют улучшенные упруго-гистерезисные свойства в сравнении с ненаполненным маслом серийным СКДН.

В ООО «НТЦ «Кама» компании ПАО «Нижнекамскшина» проведены испытания маслонаполненных образцов на основе опытного узкодисперсного СКДН ІІІ группы в протекторе грузовых шин, по итогам которых получены положительные результаты. Разработанные образцы рекомендованы к применению в промышленных рецептурах грузовых шин.

Рассчитано, что образец линейного узкодисперсного маслонаполненного цис-1,4-полибутадиена, наполненный маслом TDAE (treatment distillate aromatic extract — очищенный дистиллятный ароматический экстракт) характеризуется меньшей стоимостью (на 21 181,10 руб./т) в сравнении с ненаполненными промышленными СКД.

Положения, выносимые на защиту:

- использование в качестве мягчителей различных нефтяных типов отечественных масел, отвечающих современным экологическим требованиям для наполнения неодимового полибутадиена;
- результаты по исследованию совместимости неодимового цис-1,4-полибутадиена с маслами в зависимости от природы масел и молекулярных характеристик исходного каучука, полученные на основе опытов по определению кинетики набухания каучуков в различных маслах, а также проведенных хроматографического, ¹³С ЯМР анализов, исследование ИКспектров.
- результаты физико-механических испытаний вулканизатов на основе цис-1,4-полибутадиенов, наполненных различными маслами в сравнении с серийными образцами, промышленно-выпускаемых бутадиеновых каучуков различной структуры, а также импортным аналогом.

Апробация работы. Основные результаты работы были представлены на Региональных и Всероссийских научных конференциях: VIII Всероссийская конференция «Каучук и Резина - 2018: традиции и новации» (Москва, 2018), XXV Научно-практическая конференция Резиновая промышленность: сырье, материалы, технологии (Москва, 2020), V Всероссийской научно-практической конференции молодых ученых «Инновации и молодежь — два вектора развития отечественной нефтехимии». (Нижнекамск, 2021), XI Всероссийской конференции «Каучук и Резина - 2023: традиции и новации» (Москва, 2023).

Работа проводилась в рамках проекта по получению СКДН с улучшенной перерабатываемостью (NKNH-004-NG-2022) компании ПАО «Нижнекамскнефтехим» в Научно-технологическом центре ПАО «Нижнекамскнефтехим» и на кафедре ХТПЭ ФГБОУ ВО «Казанский национальный исследовательский технологический университет».

Публикации. Материалы диссертационной работы изложены в 9 научных публикациях, в том числе 4 статьи, из них 3, входящие в перечень ВАК РФ для размещения материалов диссертаций, 5 тезисах докладов Региональных и Всероссийских конференций.

Соответствие паспорту специальности. Выполненная диссертационная работа соответствует паспорту специальности 2.6.11. Технология и переработка синтетических и природных полимеров и композитов, а именно по пп. 1, 2, 5 направления исследований.

Личный вклад автора. Автор участвовал в постановке задач исследования, планировании, подготовке и проведении экспериментальной

работы по синтезу полимеров, маслонаполнению полученных каучуков, исследованию их физико-механических свойств, в обсуждении, анализе и интерпретации полученных результатов, формулировании выводов, подготовке и оформлении публикаций.

Объем и структура диссертации. Диссертация состоит из введения, литературного обзора, экспериментальной части, результатов и их обсуждения, заключения, списка сокращений и условных обозначений, списка цитируемой литературы (176 наименований). Материалы диссертации изложены на 137 страницах машинописного текста, включают 36 рисунков, 24 таблицы и 1 приложение.

ОСНОВНОЕ СОЛЕРЖАНИЕ РАБОТЫ

- Во <u>Введении</u> обоснованы актуальность и научная новизна работы, сформулированы цели исследований.
- В <u>Главе 1</u> проведен литературный обзор отечественных и зарубежных работ по тематике диссертации. На основе изученного материала сформулированы основные задачи исследований, определены научные и практические аспекты диссертационной работы.
- В <u>Главе 2</u> представлены характеристики исходных продуктов, описание и схемы лабораторной и опытно-промышленной установок проведения полимеризации, изложены методы анализа и исследования исходных и конечных продуктов.

Микроструктура полученных каучуков исследовалась на спектрометре «Spectrum 100» фирмы Perkin Elmer с применением приставки НПВО в диапазоне волновых чисел $4000 \div 400$ см $^{-1}$ в соответствии с ISO 21561/2. Исследование молекулярных параметров осуществлялось на хроматографе «Alliance GPCV 2000» фирмы «Waters», который оснащен рефрактометрическим детектором. Для разделения применены колонки с диапазоном разделения молекулярных масс $100 \div 10 \cdot 10^6$ г/моль. Калибровку прибора проводили по полистирольным стандартам. Калибровочная кривая — универсальная. В качестве растворителя применялся толуол.

Эксперименты ядерного магнитного резонанса проводились на ЯМР-спектрометре Bruker Avance III HD-700. В экспериментах ЯМР ¹³С АРТ (Attached Proton Test) использованы специальные манипуляции с импульсной последовательностью радиочастотного поля, которым облучается исследуемый образец. Таким образом, явилась возможность определить множественности С-Н в спектрах ЯМР ¹³С и получить информацию обо всех видах углерода в рамках одного эксперимента.

Вязкость по Муни и релаксация напряжения определялись на вискозиметре «MV 2000» производства компании «Alpha Technologies» по ГОСТ Р 54552 при температуре 100 °С. Процесс резиносмешения осуществлялся в две стадии: на первой стадии смешение ингредиентов проводилось при помощи роторного резиносмесителя фирмы «Brabender 350E» при температуре загрузки компонентов 60°С и скорости вращения —

50 об/мин в течение 6 минут, вторая стадия состояла из введения вулканизующих агентов на двухвалковых вальцах производства компании «SCAMEX» при температуре поверхности валков 40 ± 5 °C. Реометрические характеристики исследовались на приборе «MDR 2000» компании «Alpha Technologies» по ASTM D5289 при 150 °C в течение 30 мин и амплитуде деформации 0.5°. Вулканизация полученных резиновых смесей осуществлялась в прессе «LAP-100» компании «Joos».

Тангенс угла потерь определялся на приборе «RPA 2000» компании «Alpha Technologies» согласно ASTMD6601. Прочностные показатели вулканизатов определялись согласно ГОСТ 270.

Истираемость определялась на приборе «Bareiss» в соответствии со стандартами (ГОСТ 23509, ISO 4649, ASTMD5963).

Теплообразование по Гудрич определялась на приборе «Флексометр RH-2000N» в соответствии с ГОСТ 20418.

Измерение показателя сопротивления раздиру осуществлялось по ГОСТ 262.

Показатель эластичности по отскоку определялся на приборе Шоба согласно ГОСТ 27110.

Показатель твердости по Шору А – в соответствии с ГОСТ 263.

<u>Глава</u> 3. Процесс полимеризации диенов в присутствии каталитических комплексов на основе лантаноидных соединений вызывает закономерный интерес, обусловленный активностью систем и высокой стереорегулярностью получаемых полимеров. В последнее время отмечается постепенное повышение доли каучуков, полученных на основе «неодимовых» катализаторов. Производство упомянутых каучуков представляет собой интерес, однако требует проведения различных исследований с целью дальнейшего улучшения потребительских свойств получаемой продукции. К числу подобных актуальных разработок можно отнести получение неодимовых полимеров, наполненных маслами различных марок.

Получение «неодимового» СКД осуществлено на лабораторной и пилотной установках методом ионно-координационной полимеризации в среде нефраса, периодическим способом. В качестве каталитического комплекса использована тройная система: неодеканоат неодима — диизобутилалюминийгидрид — этилалюминийсесквихлорид. Процесс получения каучука с требуемым комплексом свойств проходил путем варьирования следующих технологических параметров процесса полимеризации: температуры и времени полимеризации, дозировки катализатора, содержания мономера в гексане / нефрасе.

В рамках исследования влияния идентичных дозировок масел нефтяного и растительного происхождения синтезированы опытные образцы высокомолекулярного цис-1,4-полибутадиена с вязкостью около 80 ед. по Муни, приближенной к ненаполненному зарубежному аналогу. Основные параметры процесса полимеризации приведены в таблице 1.

Tr C 1	T		
Таблина Г –	- Технологические па	паметны процесса	попимеризации
т иолици т	1 CAMOMON IN TOURING THE	риметры процесси	полимеризации

Концентрация мономера, % мас.	11,7	
Мольное соотношение Бутадиен	15000	
Температура шихты, °С	60	
Время синтеза, мин	60	
V0/	10 мин	77
Конверсия мономера, %	60 мин	95

Анализ молекулярных характеристик импортного образца без масла показал, что содержание в нем цис-1,4-звеньев составило 96,1%, M_w/M_n =2,60, в то время, как у опытных образцов — 97,5% и 2,99 соответственно.

С целью дополнительного исследования структуры экстрагированного образца зарубежного неодимового СКД проведен расчет площади под кривой релаксации в сравнении с линейными СКДН различной вязкости по Муни. В результате отмечено, что импортный образец имеет разветвленную структуру, в то время, как опытный СКДН является линейным.

Полученные опытные каучуки были наполнены нефтяными маслами торговых марок «Norman 346» (TDAE), «Norman 132» (MES), «Norman 239» (NLP), «Norman 583» (TRAE), а также маслами растительного происхождения, такими как Phytonorman 212 и Phytonorman 213 производства АО «Управляющая компания Биохимического холдинга ОРГХИМ».

После этого на основе полученных маслонаполненных образцов осуществлено приготовление резиновых смесей с последующей вулканизацией согласно ASTM D 3484 (формула 2, метод В).

Исследование резиновых смесей и вулканизатов на основе опытных каучуков СКДН с различными маслами (Таблица 2) показало, что ароматические углеводороды в составе нефтяных масел незначительно влияют на реометрические свойства, при этом прочностные показатели находятся на идентичном уровне. Из результатов испытаний растительных масел следует, что они существенно влияют на вязкость резиновых смесей и вулканизационные свойства. При этом прочность резин находится на уровне импортного аналога, однако вулканизаты существенно уступают по гистерезисным показателям и имеют меньшую твердость. По совокупности результатов исследуемых показателей отмечено, что среди представленных масел оптимальными для наполнения являются масла МЕЅ и ТDAE. В связи с чем принято решение о проведении дальнейших экспериментов по наполнению указанными нефтяными маслами высокомолекулярного «неодимового» полибутадиена в различном диапазоне дозировок.

Таблица 2 – Результаты испытаний образцов каучуков, наполненных различными маслами

различными маслами							
Показатели	Импор тный аналог с MES (27,3%	СКДН + 27,3 % MES	СКДН + 27,3 % NLP	СКДН + 27,3 % TDAE	СКДН + 27,3 % TRAE	СКДН +27,3% Phytonor man 212	СКДН +27,3% Phytonor man 213
	И	сходнь	іе каучуі	ки			
Вязкость по Муни ML (1+4) 100 °C, усл. ед.	79,8	82,7	80,5	83,5	82,6	79,5	79,5
	Масло	наполн	енные к	аучуки	I		
Вязкость по Муни ML (1+4) 100 °C, усл. ед.	36,0	35,5	38,1	36,6	38,7	29,1	30,7
	Свой	ства рез	виновых	смесей			
Вязкость по Муни ML (1+4) 100 °C, усл. ед.	71,9	95,3	95,7	95,9	96,0	73,1	51,5
Pe	зультат	ы испь	ітаний н	a RPA	2000		
Эффект Пейна, $\Delta G'_{I-}$ 50%, кПа	480	515	613	504	497	560	256
tgδ при 60°С	0,161	0,154	0,163	0,181	0,181	0,242	0,267
Реометрические по	казате.	ти MDI	R 2000 (п	ри 160	°С в теч	ение 30 м	иин)
$M_{\rm L}$, dN·m	3,5	3,8	3,8	3,9	3,9	2,9	1,9
<i>M</i> _H , dN·m	19,7	20,5	20,0	19,8	19,6	15,5	11,4
<i>ts1</i> , мин	2,3	2,9	3,0	3,0	3,2	3,4	2,4
<i>t</i> 50, мин	5,7	6,3	6,2	6,3	6,6	4,9	3,9
<i>t</i> 90, мин	8,9	9,6	9,2	9,5	9,9	7,3	6,6
<i>R</i> , мин ⁻¹	15,2	14,9	16,1	15,4	14,9	25,6	23,8
Свойства вулканиза	атов (ву	лканиз	ация пр	и Т=145	5 °С в то	ечение 35	мин)
Условное напряжение при 100% / 300% растяжении, МПа	2,3/1 1,6	2,7/12	2,4/10, 7	2,6/1 2,1	2,2/9,	1,95/8, 8	2,0/10,
Условная прочность при разрыве, МПа	15,1	14,1	14,7	14,8	14,3	15,3	14,7
Относительное удлинение при разрыве, %	360	330	370	350	400	478	415
Твердость по Шору A, ед.	57	63	60	61	61	54	50
Эластичность по отскоку, %, при 23°C / 70 °C	47/52	48/52	48/54	47/5 2	48/50	35/37	32/34

В рамках исследования **различных дозировок нефтяных масел MES и TDAE** с целью проведения наиболее подробного исследования по влиянию различных дозировок масел наработаны образцы каучука с вязкостью 98 ед. по Муни., с содержанием цис-1,4-звеньев 97,3% и M_w/M_n =3,26. Основные параметры процесса полимеризации приведены в таблице 3.

TD ()	г		
Таблина 3—	Гехнологические пара	метры процесса пол	имеризании

Концентрация мономера, % мас.		15,5
Мольное соотношение Бутадиен-1,3/Nd, моль/моль		24000
Температура шихты, °С		60
Время синтеза, мин		90
	10 мин	59
Конверсия мономера, % 60 мин		81
	90 мин	86

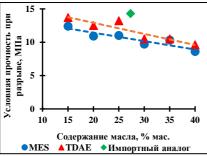


Рис. 1 — Условная прочность вулканизатов в зависимости от различного содержания масел MES и TDAE

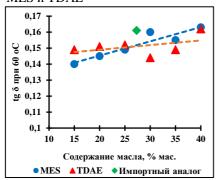


Рис. 3 – Изменение tgð при 60°C вулканизатов в зависимости от различного содержания масел MES и TDAE

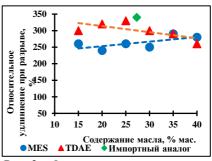


Рис. 2 – Относительное удлинение вулканизатов в зависимости от различного содержания масел MES и TDAE

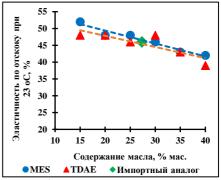


Рис. 4 — Эластичность по отскоку вулканизатов при 23°C в зависимости от различного содержания масел MES и TDAE

В ходе исследования влияния молекулярных характеристик исходных каучуков и состава нефтяных масел на их сродство, а также на свойства вулканизатов получены образцы высокомолекулярного неодимового цис-1,4-полибутадиена с вязкостью по Муни,

обеспечивающую выделение каучука на существующем оборудовании без необходимости проведения модернизации на производстве завода СК. В результате в качестве целевой вязкости принято максимальное допустимое значение по ТУ 20.17.10-100-05766801-2021 «Каучук бутадиеновый неодимовый (СКДН)» для промышленного каучука марки «СКД 563» III группы вязкости – 70 ед. Муни. Далее в условиях опытно-промышленной установки цеха №1121 получен образец, синтезированный на опытном катализаторе по улучшенной рецептуре с вязкостью по Муни, идентичной серийному СКДН IIIОсновные параметры группы. полимеризации приведены в таблице 4. Стоит отметить, что опытный каталитический комплекс в сравнении с промышленным характеризовался меньшей долей алюмоорганических соединений в своем составе. Сравнительная характеристика указанных каучуков, а также импортного аналога представлена в таблице 5.

Таблица 4 – Технологические параметры процесса полимеризации

1 1 1 ,				
Концентрация мономера, % мас.		16,9		
Мольное соотношение Бутадиен-1,3/Nd, моль/моль		23000		
Температура шихты, °С		50		
Время синтеза, мин		90		
	10 мин	41		
Конверсия мономера, %	60 мин	95		
	90 мин	99		

Таблица 5 — Микроструктура и молекулярные характеристики исходных каучуков для маслонаполнения

Показатели	Импортный аналог (после экстрагирования)	Опытный узкодисперсный СКДН III гр.	Промышленный широкодисперсный СКДН III гр.		
Вязкость базового полимера по Муни, усл. ед./ Эластическое восстановление, усл. ед	79,8/9,0	70,4/2,3	69,2/2,8		
	Микрострукт	гура			
цис-1,4, % мас.	96,1	96,8	96,6		
транс-1,4, % мас.	3,2	2,7	2,7		
1,2-зв., % мас.	0,7	0,5	0,7		
	Молекулярные хара	ктеристики			
$M_n \times 10^{-3}$, г/моль	202	195	196		
$M_w \times 10^{-3}$, г/моль	524	526	606		
M _z ×10 ⁻³ , г/моль	1180	1183	1801		
M_w/M_n	2,60	2,70	3,10		
	Количество фракций в образце				
1 млн., %	12,4	11,7	15,2		
500 тыс. – 1 млн., %	22,4	25,3	20,8		
100 тыс. – 500 тыс., %	53,4	51,0	51,0		
100 тыс., %	11,8	12,0	13,0		

Согласно полученным данным, опытный неодимовый полибутадиен в сравнении с зарубежным образцом характеризовался идентичным ММР и большим содержанием цис-1,4-звеньев. В случае промышленного СКДН III группы отмечено более широкое ММР, чем у импортного образца и опытного СКДН III группы.

После этого проведено наполнение рассматриваемых каучуков маслами MES и TDAE, выбранных ранее в качестве оптимальных. Дозировку масел подбирали до достижения вязкости $40 \div 41$ ед. Муни, что соответствует І группе вязкости для промышленно выпускаемых промышленных СКДН І группы.

В процессе маслонаполнения для промышленного широкодисперсного СКДНІІІ группы получены следующие дозировки масел:

- в случае с MES 15,16%;
- в случае с TDAE 17,07%.

После этого осуществлено наполнение опытного образца узкодисперсного СКДНІІІ группы путем введения подобранных ранее дозировок масел для промышленного СКДН ІІІ группы. В результате, для опытного СКДН ІІІ группы отмечено существенное отличие в уровне вязкости по Муни при идентичной дозировке масел в сравнении с промышленным СКДН ІІІ группы (Рис. 5).

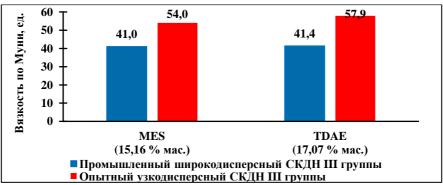


Рис. 5 — Сравнительные результаты вязкости по Муни промышленного СКДН III группы и опытного СКДН III группы, наполненных маслами MES и TDAE

После проведенной корректировки для опытного СКДНІІІ группы установлены следующие дозировки:

- в случае с MES 22,68%;
- − в случае с TDAE 23,78%.

На основании полученных результатов, с целью более подробного изучения влияния различных молекулярных характеристик каучука на процесс маслонаполнения, принято решение о проведении исследований по определению:

- характера взаимодействия между каучуком и маслами, путем изучения ИК-спектров маселМЕS и TDAE, а также исходных каучуков, после стадии маслонаполнения и экстрагирования;
- кинетики набухания опытных каучуков в маслах нефтяного происхождения;
- состава масел на основе данных, полученных в ходе хроматографического и $^{13}{\rm C}$ ЯМР анализов;
- влияния молекулярных характеристик исходных промышленного широкодисперсного СКДН III группы и опытного узкодисперсного СКДН III группы на физико-механические показатели вулканизатов, полученных на их основе.

Проведена идентификация ИК-спектров нефтяных масел, а также исходных и маслонаполненных каучуков в сравнении с экстрагированными.

В случае каучуков, наполненных маслами MES и TDAE, наблюдается пик с длиной волны 1377 см⁻¹, который выявлен у отмеченных выше ароматических масел и характеризует наличие симметричной группы –С–СН₃. Наличие указанных пиков можно наблюдать лишь у маслонаполненных образцов, у исходных полимеров и каучуков после экстракции перечисленные спектры поглощения отсутствуют. Таким образом, исходя из полученных выше данных, сделан вывод о физическом характере взаимодействии между маслами и каучуком.

В ходе **определения кинетики набухания образцов цис-1,4- полибутадиена с различными молекулярными характеристиками в маслах нефтяного происхождения** отмечена общая тенденция к
увеличению равновесной степени набухания в ряду: MES →TDAE
(Рис. 6, 7), причем разница между степенями набухания в случае
широкодисперсного образца более выражена.

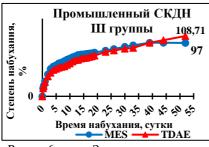


Рис. 6 — Значение степени набухания для промышленного широкодисперсного СКДНІІІ группы в нефтяных маслах

Рис. 7 – Значение степени набухания для опытного узкодисперсного СКДНІІІ группы в нефтяных маслах

Среди исследуемых нефтяных масел наибольшее сродство с каучуками продемонстрировало масло TDAE, поскольку для него рост степени набухания не прекратился после 39 суток набухания, в то время, как для ароматического масла MES наблюдалась тенденция к выходу на плато.

В ходе **исследования причин различного сродства образцов нефтяных масел MES и TDAE с каучуком** проведены эксперименты ядерного магнитного резонанса на ЯМР-спектрометре Bruker Avance III HD-700. На рис. 8 и рис. 9 показаны области (заштрихованные границы) химических сдвигов ядер ¹³С образцов масел MES и TDAE.

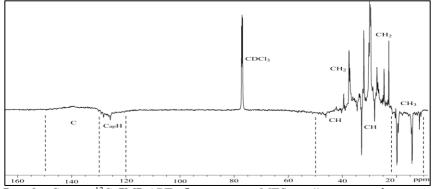


Рис. 8 – Спектр ¹³С ЯМР АРТ образца масла MES в дейтерохлороформе

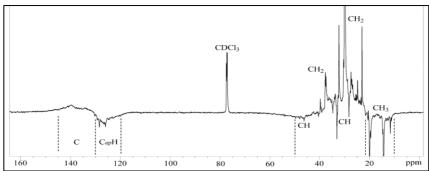


Рис. 9 – Спектр ¹³С ЯМР АРТ образца масла TDAE в дейтерохлороформе

После этого были подсчитаны молярные доли атома углерода при различных группах углеводородов. Результаты приведены в таблице 6. Согласно представленным данным молярная доля атома углерода при ароматических углеводородах в случае масла TDAE выше, чем для MES.

Таблица 6 — Молярные доли атома углерода при различных группах углеводородов в образцах нефтяных масел MES и TDAE по данным анализа ¹³С ЯМР спектра

Группы	MES	TDAE
$C_{\rm p}$ (первичные),% мол.	12,5	9,9
C_{sq} (вторичные и четвертичные),% мол.	52,0	47,8
$C_{\rm t}$ (третичные),% мол.	20,8	21,1
$C_{\rm ar}$ (ароматические),% мол.	14,7	21,2
C_{arring} (ароматические кольцевые группы),% мол.	5,8	8,5
Итого	100	100

По итогам проведенного хроматографического анализа масел помимо отличия в суммарном содержании ароматических соединений, выявлено различное соотношение ароматических фракций и смол. Так, в случае с TDAE содержание тяжелой ароматики и смол в 2 раза выше, в сравнении с маслом MES. Полученные результаты коррелируются с молярной долей атома углерода при углеводородах ароматических кольцевых групп.

Таким образом путем проведения хроматографического и ¹³С ЯМР анализов масел выявлено, что различная совместимость масел с каучуком зависит не только от общего содержания ароматических углеводородов в наполнителе, но и от соотношения ароматических фракций, имеющих различную молекулярную массу и структуру.

В ходе исследования свойств резиновых смесей, а также вулканизатов, полученных на основе маслонаполненных цис-1,4-полибутадиенов с различной полидисперсностью осуществлено приготовление резиновых смесей, с последующей вулканизацией по типовой рецептуре протектора для грузовых шин.

В качестве контрольных образцов использованы вулканизаты на основе зарубежного маслонаполненного аналога с MES, а также промышленных ненаполненных каучуков (Таблица 7). Результаты физикомеханических испытаний представлены в таблице 8.

Таблица 7 – Структура и молекулярные характеристики промышленных и опытного каучуков

	Промышленный	Промышленный	Опытный
Показатели	Показатели широкодисперсный СКДН I группы		узкодисперсный СКДН III гр.
1	2	3	4
Вязкость базового полимера по Муни, усл. ед.	42,2/2,3	43,0/2,1	70,4/2,3

1	2	3	4		
Микроструктура					
цис-1,4, % мас.	95,7	96,2	96,8		
транс-1,4, % мас.	3,5	3,2	2,7		
1,2-зв., % мас.	0,8	0,6	0,5		
	Молекулярные	характеристики			
Mn	119	146	195		
Mw	386	372	526		
Mz	1188	1230	1183		
Mw/Mn	3,23	2,54	2,70		
	Количество фр	акций в образце			
1 млн	8,0	5,4	11,7		
500 тыс. – 1 млн.	13,0	13,9	25,3		
100 тыс. – 500 тыс.	54,2	62,2	51,0		
100 тыс.	24,8	18,5	12,0		

Таблица 8 — Результаты испытаний образцов промышленного СКДН III группы и опытного узкодисперсного СКДН III группы, наполненных маслами MES и TDAE, в сравнении с импортным аналогом и промышленными ненаполненными каучуками

Название пробы	Импо ртный аналог с MES	Пром- й шир. I гр. (без масла)	Пром- й узк. I гр. (без масла)	Пром- й шир. III гр. + MES(1 5,16%)	Пром- й шир. III гр. + TDAE (17,07 %)	Опыт ный узк. III гр. + MES (22,68 %)	Опытн ый узк. III гр. + TDAE (23,78 %)
1	2	3	4	5	6	7	8
Вязкость каучука по Муни ML (1+4) 100 °С, ед. Муни / эластическое восстановление, ед. Муни	36,0/3	42,2/2	43,0/2	41,0/2	41,4/2	41,7/1	41,1/1,
Показа	тели смен	пения (рез	виносмеси	тель Brab	ender)		
Вязкость резиновой смеси, ед. Муни	52,9	68,8	68,7	68,1	65,3	63,3	63,4
Эффект Пейна, $\Delta G_{1\text{-}50\%}$, кПа	278	289	310	295	275	315	326
tg δ при 60 °C	0,151	0,138	0,137	0,131	0,134	0,138	0,144
tg δ при 0 °C	0,180	0,166	0,161	0,163	0,168	0,179	0,179
tg δ при –20 °C	0,280	0,240	0,241	0,245	0,265	0,270	0,286
Реометрические показатели: 160°C×30 мин.							
M _L , dN ⁻ m	2,3	2,6	3,0	3,0	2,7	2,9	2,4
M _H , dN ⁻ m	15,6	18,4	17,0	17,6	16,9	16,4	16,1
t _{S1} , мин	1,3	1,0	0,9	1,2	1,2	0,9	0,8
t ₅₀ , мин	2,3	2,0	1,6	2,1	2,2	1,8	1,8
t ₉₀ , мин	3,9	3,6	3,0	3,4	3,4	3,0	3,1

продолжение таблицы 8

1	2	3	4	5	6	7	8
Режим вулканизации: 150°C×30 мин.							
Модуль 300%/Модуль 100%	4,7	4,2	4,4	4,3	4,5	4,1	4,1
Условная прочность при разрыве, МПа	18	20,4	20,4	19,7	19,6	19,6	19,5
Относительное удлинение при разрыве, %	524	530,5	548	535	552	543	558
Сопротивление раздиру, кгс/см ²	65	93	66	87	92	78	65
Истираемость, мг	35	20	21	22	24	27	27
Твердость по Шору А, ед.	55	59	58	56	56	55	55
Эластичность по отскоку 23°C / 70°C	46/57	52/60	50/58	51/60	51/59	49/57	48/56
Теплообразование, °С	5,0	7,5	7,7	6,4	7,0	5,6	6,0

На основании полученных результатов можно сделать следующие выводы:

- маслонаполненные образцы на основе опытного узкодисперсного СКДН III группы в сравнении с промышленным СКДН III группы характеризуются большим содержанием масел при идентичной исходной вязкости, что означает снижение себестоимости каучука в сравнении с промышленным СКДН III группы;
- опытные узкодисперсные СКДН III группы, наполненные маслами MES и TDAE по уровню дозировки масел (22,68% мас. и 23,78% мас. соответственно) приближены к импортному аналогу (27,3% мас.), при этом имея меньшую исходную вязкость по Муни, что позволит получать каучук с меньшими затратами в процессе выделения базового полимера на существующем оборудовании производств;
- вулканизаты, полученные на основе опытных маслонаполненных узкодисперсных СКДН III группы обладают идентичным уровнем прочностных свойств в сравнении с остальными образцами, по теплообразованию приближены к зарубежному аналогу, при этом превосходя его по таким показателям, как «истираемость», «сопротивлению по раздиру», потери на качение при 60° С, сцепление на мокрой и заснеженной дороге («tg δ при 0° С» и «tg δ при минус 20° С» соответственно).
- В ходе исследования плотности вулканизационной сетки получены данные по набуханию сетки вулканизатов, изготовленные на основе образцов неодимового цис-1,4-полибутадиена с различной полидисперсностью. Результаты представлены в таблице 9. Анализ полученных данных показал, что уровень молекулярных характеристик в исходном каучуке, а также различные дозировки масел не влияют на плотность образованной вулканизационной сетки.

Таблица 9 — Значения плотности вулканизационной сетки для промышленного СКДН III группы и опытного узкодисперсного СКДН III

группы

Наименование каучука	Содержание и тип масла	N _c
Промышленный СКДН III группы	Исходный (без масла)	0,0000322
	+15,16% MES	0,0000350
	+17,07% TDAE	0,0000369
Опытный	Исходный (без масла)	0,0000343
узкодисперсный СКДН	+22,68% MES	0,0000351
III группы	+23,78% TDAE	0,000361

С целью обоснования экономической целесообразности получения маслонаполненных «неодимовых» полибутадиенов проведены ориентировочные расчеты стоимости полученных опытных каучуков. Согласно полученным данным выявлено, что в случае с промышленным СКДН III группы оптимальным маслом для наполнения является масло ТDAE, в случае с опытным узкодисперсным СКДН III группы возможно применение обоих типов масел, но в особенности стоит отметить масло TDAE, при котором стоимость маслонаполненного каучука ниже ненаполненного на 21 181,1 руб./т (Таблица 10).

Таблица 10 — Сравнительная оценка стоимости маслонаполненных «неодимовых» СКДН III группы в сравнении с ненаполненными марками СКДН I группы

Наименование каучука	Суммарная стоимость, руб./т	Наименование ненаполненного каучука	Стоимость, руб./т	Разница в сравнении с ненаполненной маркой, руб./т
Промышленный широкодисперсный СКДН III группы +15,16% MES	195 712,66	Промышленный широко-	193 830	+1 882,66
Промышленный широкодисперсный СКДН III группы +17,07% TDAE	184 880,79	дисперсный СКДН I группы	193 830	- 8 949,21
Опытный узкодисперсный СКДН III группы +22,68% MES	190 552,66	Промышленный	197 715	- 7 162,34
Опытный узкодисперсный СКДН III группы +23,78% TDAE	176 533,90	узкодисперсный СКДН I группы	197 /13	- 21 181,10

В ООО «НТЦ «Кама» ПАО «Нижнекамскшина» на основе опытных каучуков изготовлены протекторные резиновые смеси по действующей рецептуре по двухстадийному режиму смешения в сравнении с референсными образцами. Результаты приведены в таблице 11.У резиновых смесей с применением опытных образцов каучука выше максимальный

крутящий момент относительно импортного образца и сопоставимый с промышленными ненаполненными каучуками.

Таблица 11 – Результаты физико-механических испытаний протекторной

резиновой смеси грузовых шин, полученные в ООО «НТЦ «Кама»

Название пробы Вязкость каучука по Муни МL (1+4) 100 °С, ед. Муни / эластическое восстановление, ед. Муни	Опытный узк-ый СКДН III группы +22,68% MES	Опытный узк-ый СКДНШ группы +23,78% TDAE	Импо ртны й анало гс MES	Промышл енный шир-ый СКДН I группы (без масла)	Промыш ленный узк-ый СКДНІ группы (без масла)			
	Показато	ели смешения						
Вязкость резиновой смеси, ед. Муни	82,8	80,6	74,1	80,8	85,0			
tg δ при 60 °C	0,152	0,158	0,173	0,153	0,155			
Реоме	трические пок	азатели: 160°C	×30 мин	yT				
M _L , dN· m	3,8	3,6	3,2	3,4	3,7			
M _H , dN· m	22,0	21,2	19,9	22,0	22,5			
t _{S1} , мин	1,8	1,9	1,8	1,4	1,4			
t ₅₀ , мин	3,0	3,1	3,0	2,6	2,6			
t ₉₀ , мин	4,6	4,7	4,5	4,0	4,0			
	Режим вулканизации: 150°С×30`							
Условное напряжение при 100% удлинении, МПа	2,9	2,9	2,7	2,9	3,1			
Условное напряжение при 300% удлинении, МПа	12,0	12,1	11,4	12,5	12,9			
Условная прочность при разрыве, МПа	19,8	19,9	20,0	21,7	21,5			
Относительное удлинение при разрыве, %	453	455	472	450	450			
Сопротивление раздиру, кН/м	93	94	86	92	88			
Истираемость, мг	29	28	32	24	22			
Твердость по Шору А, ед.	58	57	57	57	58			
Эластичность по отскоку при 23°C /70°C	48/60	46/58	48/58	50/58	50/59			
Теплообразование, °С	11,4	11,9	11,7	12,7	13,3			

По свойствам вулканизатов резиновые смеси с применением опытных образцов по прочностным показателям находятся на одном уровне с импортным, по параметру «Сопротивление раздиру» превосходят его и ненаполненный промышленный узкодисперсный СКДН І группы. По теплообразованию опытные маслонаполненные СКДН имеют сопоставимый уровень с референсными образцами. Полученные образцы маслонаполненных «неодимовых» цис-1,4-полибутадиенов представляют

практический интерес и могут быть рекомендованы к применению в промышленных рецептурах шин.

ЗАКЛЮЧЕНИЕ

Получен линейный неодимовый цис-1,4-полибутадиен с высокой вязкостью по Муни и низким коэффициентом полидисперсности, наполненный высокоароматическими неканцерогенными маслами отечественного производства.

Установлены оптимальные дозировки масел для данного каучука: в случае с маслом MES -22,68% мас., в случае с TDAE -23,78% мас.

Установлено влияние полидисперсности каучука СКДН на взаимодействие с высокоароматическими маслами MES и TDAE, позволяющее оптимизировать содержание масел в каучуке для получения резин с улучшенными физико-механическими и упруго-гистерезисными свойствами.

Вулканизаты, полученные на основе опытных узкодисперсных маслонаполненных СКДН III группы в сравнении с ненаполненными промышленными СКДН I группы имеют лучшее сцепление на заснеженной (tg при -20°C) на 10÷16% и мокрой дороге (tg при 0°C) на 7÷10% и обладают идентичным с ними уровнем прочностных свойств, по теплообразованию приближены к зарубежному аналогу, при этом превосходя его по таким показателям, как «истираемость» - на 20%, «сопротивлению по раздиру» - на 19% (в случае с MES), «tgδ при 60°С» – на 5÷9%.

По итогам проведенного расчета стоимости опытных узкодисперсных маслонаполненных СКДН III группы отмечено снижение показателя относительно промышленной ненаполненной марки узкодисперсного СКДН I группы на 8 949 руб/т (в случае с МЕS) и 21 181 руб/т (в случае с ТDAE).

Дальнейшей перспективой работы является то, что в ООО «НТЦ «Кама» компании ПАО «Нижнекамскшина» проведены испытания маслонаполненных образцов на основе опытного узкодисперсного СКДН ІІІ группы в протекторе грузовых шин, по итогам которых получены положительные результаты. Разработанные образцы рекомендованы к применению в промышленных рецептурах грузовых шин.

Публикации в изданиях, рекомендованных ВАК РФ для размещения материалов диссертаций:

- 1) Фазилова Д.Р. О влиянии различного содержания масел на свойства высокомолекулярного неодимового цис-1,4-полибутадиена / Д.Р. Фазилова, Д.Р. Гималдинов, В.Н. Борисенко, Д.В. Тютюгина // Каучук и резина. -2018. -T.77. -№4. -C. 222-227.
- 2) Фазилова Д.Р. О влиянии различных типов масел на свойства высокомолекулярного неодимового цис-1,4-полибутадиена / Д.Р. Фазилова, Д.Р. Гималдинов, В.Н. Борисенко, А.М. Вагизов, С.И. Вольфсон // Каучук и резина. 2022. №1. С. 12-16.

3) Фазилова Д.Р. Исследование влияния нефтяных и растительных типов масел на свойства высокомолекулярного цис-1,4-полибутадиена, полученного на неодимовой каталитической системе / Д.Р. Фазилова, Д.Р. Гималдинов, В.Н. Борисенко, А.М. Вагизов, С.И. Вольфсон, О.М. Трифонова // Вестник технологического университета. −2022. – Т.25. –№ 5. – С. 40-43.

Публикации в прочих изданиях:

1) Rakhmatullin I. Structural-group characteristics of some softeners by high resolution ¹³C NMR spectroscopy / I. Rakhmatullin, S. Efimov, A. Klochkov, D. Fazilova, **D. Gimaldinov**, M. Varfolomeev, V. Klochkov// Znanstvena misel journal. – 2023. – №75. – P. 8-12.

Тезисы докладов и статьи в сборниках и материалах конференций:

- 1) Фазилова Д.Р. Влияние введения масел-пластификаторов различного типа на свойства резиновых смесей и вулканизатов на основе высокомолекулярного цис-1,4-полибутадиена / Д.Р. Фазилова, Д.Р. Гималдинов, В.Н. Борисенко // Сб. докладов XXIII научно-практич. конф. «Резиновая промышленность: сырье, материалы, технологии». 2018. С. 68-71.
- 2) Гималдинов Д.Р. Маслонаполнение высокомолекулярного «неодимового» полибутадиена / Д.Р. Гималдинов, Д.Р. Фазилова // Сб. тезисов VIII Всеросс. конф. «Каучук и резина 2018: традиции и новации». 2018. С. 39.
- 3) Гималдинов Д.Р. Масла-наполнители синтетических каучуков. Свойства вулканизатов на основе высокомолекулярного цис-1,4-полибутадиена / Д.Р. Гималдинов, Д. Р. Фазилова, В. Н. Борисенко, А. М. Вагизов // Сб. докладов XXV научно-практ. конф. «Резиновая промышленность: сырье, материалы, технологии». 2020. С. 73-75.
- 4) Гималдинов Д.Р. Маслонаполнение стереорегулярных неодимовых бутадиеновых каучуков / Д.Р. Гималдинов, С.И. Вольфсон // Материалы V Всеросс. научно-практич. конф. молодых ученых «Инновации и молодежь два вектора развития отечественной нефтехимии». 2021. С. 8-9.
- 5) Гималдинов Д.Р. Исследование сродства нефтяных и растительных масел с неодимовым цис-1,4-полибутадиеном / Д.Р. Гималдинов, Д.Р. Фазилова, В.Н. Борисенко, С.И. Вольфсон / Сб. тезисов XI Всеросс. конф. «Каучук и резина 2023: традиции и новации». 2023. С. 57.