Ha правах руфописи

Зарипов Ильназ Ильдарович

ПОЛИМЕРЫ НА ОСНОВЕ МАКРОИНИЦИАТОРОВ, АРОМАТИЧЕСКИХ ИЗОЦИАНАТОВ И КРЕМНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ: СИНТЕЗ И СВОЙСТВА

1.4.7. Высокомолекулярные соединения

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора химических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ») и федеральном государственном бюджетном образовательном учреждении высшего образования «Казанский государственный энергетический университет» (ФГБОУ ВО «КГЭУ»).

Научный консультант: Дав.

Давлетбаева Ильсия Муллаяновна доктор химических наук, профессор

Официальные оппоненты:

Антипин Игорь Сергеевич

доктор химических наук, член-корреспондент РАН, профессор кафедры «Органической и медицинской химии» Федерального государственного автономного образовательного учреждения высшего образования «Казанский (Приволжский) федеральный университет»

Амирова Лилия Миниахмедовна

доктор химических наук, профессор, ведущий научный сотрудник научноисследовательской лаборатории №6 Научно-образовательного центра «Центр композитных технологий» Федерального государственного бюджетного образовательного учреждения высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ»

Борисов Илья Леонидович

доктор химических наук, ведущий научный сотрудник лаборатории Полимерных мембран Федерального государственного бюджетного учреждения науки «Институт нефтехимического синтеза им. А.В. Топчиева» Российской академии наук

Ведущая организация:

Федеральное государственное бюджетное учреждение науки «Федеральный исследовательский центр проблем химической физики и медицинской химии» Российской академии наук (ФИЦ ПХФ и МХ РАН)

Защита диссертации состоится «11» февраля 2026 г. в 10.00 часов на заседании диссертационного совета 24.2.312.09, созданного на базе ФГБОУ ВО «КНИТУ» по адресу: 420015, г. Казань, ул. К. Маркса, 68, зал заседаний Ученого совета.

Отзывы на автореферат в двух экземплярах с подписями, заверенными печатями, просим направлять по адресу: 420015, г. Казань, ул. К. Маркса, д. 68, ученый совет и e-mail: upak@kstu.ru.

В отзыве указываются фамилия, имя, отчество (полностью), ученая степень с указанием специальности, ученое звание, наименование организации и должность лица, представившего отзыв, с указанием структурного подразделения, почтовый адрес, телефон и адрес электронной почты (при наличии) (п. 28 Положения о присуждении ученых степеней)

1) (,						
С диссертацией	можно	ознакомиться	В	научной	библиотеке	ФГБОУ	ВО
«КНИТУ» и на сайте:	www.kstu	ı.ru/event.jsp?id	=17	72093&id	cat=141.		
Автореферат разослан			20	25 г.			

Ученый секретарь лиссертационного совета

Каримова Лиана Катифьяновна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования.

Современное развитие химии высокомолекулярных соединений и расширение областей потенциального использования полимерных материалов предъявляет требования к целенаправленному и гибкому управлению их техническими свойствами. Последнее может быть достигнуто развитием новых подходов к синтезу, модификации и надмолекулярной организации блок-сополимеров (БС), выделяющихся в специфическую категорию среди полимерных материалов и представляющих собой полимеры, в которых два или более гомополимерных сегмента (блока) соединены посредством ковалентных связей. Путём изменения в широких пределах строения, порядка связывания блочных структур, молекулярной массы и параметров их взаимодействия становится возможным воздействовать на комплекс свойств получаемых материалов и обеспечивать широкий спектр их практического использования. К уникальным особенностям БС следует отнести их способность к формированию отличающихся многообразием взаимно нерастворимых упорядоченных структур, объединяющихся в собственные микрофазы как в твердом состоянии, так и в растворе. К другим ключевым факторам, контролирующим как результирующие морфологии, так и степень их дальнего порядка, следует отнести макромолекулярную архитектуру БС.

Одной из важных областей применения БС в том числе и мультиблоксополимеров является создание мембранных материалов с различными характеристиками и направлениями использования. В качестве таких мембран традиционно исследуются полиорганосилоксановые блок-сополимеры, особенностью которых является сочетание высокой газопроницаемости, гидрофобности, низкой температуры стеклования и относительно высоких прочностных показателей.

Перспективными для использования в качестве газоразделительных мембран и подложек для сорбции красителей являются БС, получаемые на макроинициаторов анионной природы 2,4-толуилендиизоцианата (2,4-ТДИ). В этом случае существует возможность оказывать значительное влияние на способность изоцианатных групп (-N=C=O) к раскрытию как по N=C, так и по C=O составляющим и создания таким образом новых макромолекулярных архитектур. Согласно известным литературным источникам, результатом раскрытия изоцианатных (-N=C=O) групп по N=C компоненте обуславливает формирование полиизоцианатных блоков амидной природы (ПИА). Отсутствие стабилизаторов активного центра в случае ПИА ведёт к их последующей циклизации и образованию изоциануратных циклических структур. При раскрытии изоцианатных групп по связи С=О становится возможным формирование полиизоцианатов ацетальной природы (ПИО). Следует отметить, что в литературе практически отсутствуют сведения о получении ПИО и их детальная характеристика. Перспективным в этом направлении оказалось использование в качестве МИ

амфифильных блок-сополимеров (МИА), получаемых на основе пропиленоксида (ПО) и этиленоксида (ЭО), частично терминированных калий-алкоголятными группами. В таких полимерах ПИО составляющая способна не только создавать механически прочный каркас, но и формировать микроразмерные пустоты, а гибкие сегменты в составе МИА приводить к образованию уникальных надмолекулярных структур.

В последние годы приобретает актуальность также направление, связанное с синтезом и исследованием устойчивых к самоконденсации кремнезёмов, содержащих ответвления как гидрофобной, так и гидрофильной природы. В таких наноразмерных структурах ответвления амфифильной природы могут проявлять термодинамическую совместимость как с неполярными, так и с полярными средами. Благодаря этому обстоятельству использование амфифильных органозамещённых кремнезёмов в качестве модификаторов для блок-сополимеров, свойства которых соотносятся с совершенством микрофазного разделения, представляет собой актуальную проблему. Органозамещённые кремнезёмы перспективны также в качестве модификаторов силоксановых каучуков.

Фундаментальное и практическое значение имеет также создание в уретановых эластомерах жестких блочных структур, состоящих исключительно из звеньев ароматической природы. Такие ароматические полиуретаны (АПУ) проявляют высокие прочностные и адгезионные характеристики, стойкость к воздействию кислотных, щелочных и углеводородных сред. Наиболее доступным соединением для их получения является симметричный 4,4'-дигидрокси-2,2-дифенилпропан (БФА). Известные реакции БФА с ароматическими изоцианатами характеризуются низкими константами скоростей реакции. В условиях низкой каталитической активности используемых в этом случае третичных аминов оказывается невозможным получение протяженных жестких сегментов и непрерывных каркасных полиуретановых структур ароматической природы.

Целью настоящей работы является установление фундаментальных основ использования МИА для получения блок-сополимеров, содержащих жесткие полиизоцианатные блоки ацетальной природы (ОБС), сшиваемых изоциануратами блок-сополимеров (ИСБС), ароматических полиуретанов каркасной структуры и взаимосвязи их химической, надмолекулярной структуры с газотранспортными свойствами получаемых на основе ОБС и ИСБС материалов, их сорбционной активностью и физико-химическими характеристиками; синтез содержащих олигомерные ответвления и устойчивых к самоконденсации кремнезёмных каркасов в качестве модификаторов ОБС, ИСБС и полидиметилсилоксанов.

Для достижения поставленной цели решались следующие задачи:

- Синтез ОБС с использованием 2,4-ТДИ и МИА, различающихся молекулярной массой (Л3000 с ММ=3000, Л4200 с ММ=4200 и Л6000 с ММ=6000) и содержанием периферийных ПЭО блоков;

- Синтез полимеров на основе МИА, 2,4-ТДИ и полиэдрального октаглицидил-силсесквиоксана (Gl-POSS), установление влияния содержания Gl-POSS на особенности формирования надмолекулярной структуры полимеров;
- Синтез устойчивых к самоконденсации кремнезёмных каркасов (PSiO2), в том числе содержащих олигомерные ответвления гидрофобной (низкомолекулярный полидиметилсилоксан, ПДМС) и гидрофильной (полиэтиленоксид, ПЭО) природы (PSiO2C), исследование строения и процессов их самоорганизации, исследование PSiO2C в качестве модификаторов ОБС;
- Синтез содержащих олигомерные ответвления и устойчивых к самоконденсации кремнезёмных каркасов, содержащих силсесквиоксановые фрагменты (SiO2S) с использованием ПЭО, тетраэтоксисилана (TЭОС) и γ -аминопропилтриэтоксисилана (АГМ-9) и исследование их в качестве сокатализаторов получения полидиметилсилоксанов;
- Синтез сшиваемых изоциануратами полиорганосилоксановых блоксополимеров с использованием МИА, 2,4-ТДИ и октаметилтетрациклосилоксана (Д4), использование модификатора PSiO2C для структурирования ИСБС;
- Исследование взаимосвязи сорбционной активности, электрофизических, термических и физико-механических свойств ОБС, ИСБС и их модифицированных производных с надмолекулярной структурой;
- Изучение ОБС и ИСБС в качестве подложки для аналитических сенсоров ионов тяжёлых металлов и в качестве мембранных материалов для разделения газовых смесей;
- Исследование устойчивых к самоконденсации кремнезёмных каркасов PSiO2C в качестве модификаторов полидиметилсилоксанов;
- Синтез и исследование ароматических полиуретанов каркасной структуры с использованием МИА, ароматических изоцианатов, БФА и их металлокомплексная модификация.

Научная новизна работы.

- 1. Синтезированы блок-сополимеры, содержащие в качестве жёсткоцепной составляющей полиизоцианаты ацетальной природы (ПИО). Впервые установлены реакционные условия, включающие температуру, природу растворителя, сокатализаторы и сореагенты, обуславливающие активируемое макроинициатором амфифильной природы раскрытие изоцианатных групп по С=О составляющей и последующую стабилизацию структуры ПИО. Установлено влияние молекулярной массы МИА и содержания периферийных ПЭО блоков в составе МИА на надмолекулярную организацию ОБС. Наиболее благоприятные условия для формирования ОБС реализуются при использовании Л4200.
- 2. Впервые показано, что коэффициенты диффузии газообразных NH_3 , CH_4 , H_2S , CO_2 , N_2 и He для мембран, полученных с использованием OEC

увеличиваются по мере повышения содержания периферийных ПЭО блоков в составе Л4200. Установлено, что коэффициенты проницаемости для NH_3 и H_2S значительно превышают значения коэффициентов проницаемости для H_6 , N_2 и CH_4 . Относительно высокая проницаемость наблюдается и для диоксида углерода. В то же время содержание ПЭО блоков мало влияет на проницаемость для всех исследованных газов.

- 3. Впервые путём взаимодействия 2,4-ТДИ с Л4230 и Gl-POSS в качестве полифункционального узла ветвления, получены органонеорганические полимеры, содержащие в структуре ПИО блоки. Установлено, что в основе формирования надмолекулярной структуры полимеров и возникновения в их объеме пустот лежит способность ПИО и Gl-POSS создавать каркасные структуры.
- Синтезированы новые сшиваемые изоциануратами полиорганосилоксановые блок-сополимеры (ИСБС). Показано. надмолекулярная структура ИСБС имеет мультислойную природу, где внутреннее ядро представлено полиизоциануратным (ПИЦ) фрагментом, сформирован амфифильным слой полиэтиленоксидсредний полипропиленоксидным (ЭО-ПО) блоком, а внешняя оболочка – блоком полидиметилсилоксана (ПДМС). Эффективность сорбции функциональных органических реагентов (ОР) возрастает с увеличением размеров внешних ПДМС блоков и уменьшением в размерах полиизоциануратной внутренней составляющей.
- 5. Впервые синтезированы содержащие олигомерные ответвления и устойчивые к самоконденсации кремнезёмные каркасы, содержащие в том числе и силсесквиоксановые фрагменты. Установлено, что разработанные при модификации ОБС встраиваются между SiO2S термодинамически несовместимыми блоками и, становясь связующим звеном, приводят к усилению процессов микрофазного разделения в ОБС. PSiO2C для модификации ИСБС Использование структурированию ИСБС в результате переэтерификации посредством PSiO2C концевых -SiOH групп ИСБС. В результате происходит значительное изменение надмолекулярной организации ИСБС И улучшение газотранспортных характеристик.
- 6. Путем каталитического воздействия МИА на реакцию БФА с 4,4'-дифенилметандиизоцианатом (МДИ) и его полифункциональными производными впервые получены ароматические полиуретаны с каркасной макромолекулярной структурой, проведена их металлокомплексная модификация.

Теоретическая значимость работы.

1. Установлена фундаментальная взаимосвязь между наличием и содержанием периферийных ПЭО блоков в составе Л4200 и возможностью инициированного раскрытия изоцианатных групп по связи С=О и образованием ПИО блоков. Установлено, что основным элементом

надмолекулярной структуры ОБС являются ПИО блоки. Установлено, что понижение содержания ПЭО составляющей приводит к более жесткой упаковке ПИО блоков в составе ОБС, а ПЭО сегменты, входящие в состав Л4200 располагаются по внутренней полости пустот, образованных ПИО блоками, и происходит микрофазное разделение не только ПИО и Л4200 составляющих, но и разделение ПЭО и ППО сегментов.

- 2. Предложены модели надмолекулярной структуры ОБС и ИСБС и факторы, обуславливающие их сорбционную активность. Было установлено, что эффективность сорбции органических реагентов для ИСБС возрастает по мере уменьшения доли полиизоциануратов и, соответственно, увеличения содержания ПДМС сегментов в структуре ИСБС. В случае ОБС с уменьшением содержания ПЭО блока достигается максимально возможная степень сорбции органических реагентов (ОР).
- 3. Установлено, что содержащие полиэтиленоксидные ответвления и устойчивые к самоконденсации кремнезёмные каркасы проявляют свойства промоутеров анионной полимеризации Д4. Предложен механизм, согласно которому ПЭО составляющие, сворачиваясь в конформацию краун-эфиров, захватывают ионы K^+ , усиливая разделение в пространстве силоксанолят анионов и ионов калия, разрушение их ассоциатов и повышая в итоге скорость полимеризации Д4.

Практическая значимость работы состоит в том, что ОБС, полученные с использованием 2,4-ТДИ и МИА имеют свойства высокоэффективных газоразделительных мембран, проявляющих стойкость к воздействию агрессивных сред.

Показано, что содержащие олигомерные ответвления и устойчивые к самоконденсации кремнезёмные каркасы, оставаясь в составе получаемых с их использованием полидиметилсилоксанов, оказываются причиной значительного повышения когезионных взаимодействий в ПДМС. Использование модифицированных ПДМС позволяет оказывать эффективное воздействие на физико-механические свойства герметизирующих композиций на их основе.

Полученные полимеры испытаны в качестве сорбентов для разработки новых методов концентрирования и определения неорганических соединений. Использование ОБС и ИСБС в качестве подложки для аналитических сенсоров (органических реагентов) перспективно для обнаружения ионов тяжёлых металлов, в том числе в полевых условиях.

На основании результатов работы получено 2 патента Российской Федерации.

Объектами исследования явились получаемые с использованием 2,4-ТДИ и Л4200 блок-сополимеры, содержащие жесткие полиизоцианатные блоки ацетальной природы; органо-неорганические полимеры с каркасной структурой, получаемые с использованием 2,4-ТДИ, Л4230 и Gl-POSS; ароматические полиуретаны каркасной структуры, получаемые с

использованием МИА, БФА и МДИ / ПИЦ, содержащие олигомерные ответвления и устойчивые к самоконденсации кремнезёмные каркасы PSiO2C; сшиваемые изоциануратами полиорганосилоксановые блок-сополимеры, получаемые с использованием МИА, 2,4-ТДИ и Д4; содержащие олигомерные ответвления и устойчивые к самоконденсации кремнезёмные каркасы с силсесквиоксановыми фрагментами (SiO2S); полидиметилсилоксаны, получаемые анионной полимеризацией Д4 с использованием в качестве сокатализаторов PSiO2C и SiO2S и герметизирующие композиции на их основе.

Методы и методология исследования заключались в анализе современной литературы в области синтеза микро- и мезопористых полимерных материалов, реакционной способности ароматических диизоцианатов и блок-сополимеров, получаемых с их использованием, синтеза и использования кремнийорганических функциональных каркасных структур для модификации макромолекулярных объектов, а также дизайна полимеров для использования их в качестве мембранных материалов; прозрачных в оптической области и проявляющих способность к активной сорбции органических аналитических реагентов полимерных подложек; постановке цели, задач исследования, определении способов их достижения и сравнении полученных результатов с известными литературными данными.

Исследования химического строения получаемых полимеров и содержащих олигомерные ответвления и устойчивых к самоконденсации кремнезёмных каркасов проводились с использованием таких физико-химических методов как 1Н ЯМР и 29Si ЯМР спектроскопия, видимая и ИКспектроскопия, динамическое светорассеяние, СЭМ, ТГА. Исследование поверхностно-активных свойств устойчивых к самоконденсации кремнезёмных каркасов и олигомерных соединений проводилось путём измерения изотерм поверхностного натяжения.

надмолекулярной Исследования структуры синтезированных полимеров проводились с использованием атомно-силовой микроскопии, рентгеновского рассеяния, малоуглового ДМА И ТГА, измерений температурных зависимостей тангенса угла диэлектрических потерь. Проводились измерения физико-механических и электрофизических показателей полученных полимеров. Сорбционная активность полимеров исследовалась путем определения их краевого угла смачивания и водопоглощения. Для установления эффективности сорбции ОР на полимеры использовалась электронная спектроскопия. Газотранспортные свойства, коэффициенты диффузии и сорбции измерялись с использованием манометрического метода Дэйнса-Баррера.

Положения, выносимые на защиту:

- Реакционные условия, приводящие к формированию ПИО блоков и соответствующих ОБС как следствие инициируемого МИА раскрытия N=C=O групп, входящих в состав 2,4-ТДИ по связи C=O;

- Влияние содержания периферийных ПЭО блоков в составе Л4200 на надмолекулярную организацию ОБС, морфологию их поверхности, химическое строение внутренней поверхности пустот и газотранспортные характеристики ОБС;
- Химические реакции, сопровождающие взаимодействие полиэдрального октаглицидил-силсесквиоксана с полимеробразующей системой на основе 2,4-ТДИ и Л4230;
- Синтез и особенности строения содержащих олигомерные ответвления и устойчивых к самоконденсации кремнезёмных каркасов;
- Надмолекулярная структура, физико-механические, термомеханические и газотранспортные свойства ОБС, модифицированных содержащими олигомерные ответвления и устойчивыми к самоконденсации кремнезёмными каркасами;
- Особенности взаимодействия Д4 с Л4230 и надмолекулярная структура образующихся ИСБС. Модифицирующее воздействие содержащих олигомерные ответвления и устойчивых к самоконденсации кремнезёмных каркасов на надмолекулярную организацию, сорбционную активность и газотранспортные свойства ИСБС;
- Сокаталитическая активность PSiO2C в полимеризации Д4 по анионному механизму. Реологические свойства ПДМС, полученных с использованием PSiO2C;
- Полидиметилсилоксаны, полученные с использованием PSiO2C, и герметизирующие композиции на их основе;
- Строение и свойства модифицированных металлокомплексной системой ароматических полиуретанов каркасной структуры.

Степень достоверности результатов и апробация работы.

обоснованность полученных Достоверность ходе экспериментальных воспроизводимых исследований результатов подтверждены согласованностью и использованием классических современных физико-механических физико-химических испытаний.

Результаты диссертационной работы прошли апробацию на российских и международных конференциях: Всероссийской школеконференции студентов, аспирантов и молодых ученых «Материалы и технологии XXI века» (Казань, 2014, 2016), Международной конференции по химии и физикохимии олигомеров «Олигомеры» (Волгоград, 2015, Нижний Новгород, 2019, Самара, 2024), Всероссийской Каргинской конференции «Полимеры» (Россия, Москва, 2014, 2017, 2020, 2024), Всероссийской конференции «Структура и динамика молекулярных систем» (Россия, Яльчик, 2014, 2015, 2020), Международной конференции «Advanced Polymers via Масготовесиат Engineering» (Япония, Иокогама, 2015), Европейском конгрессе по катализу «Catalysis: balancing the use of fossil and renewable resourses» (Казап, 2015), XIII Всероссийской научной конференции

«Мембраны-2016» (Нижний Новгород, 2016), XVI European polymer Congress (Франция, Лион, 2017), Санкт-Петербургской конференции молодых ученых (Россия, Санкт-Петербург, 2014, 2015, 2016, 2017), Markovnikov congress on organic chemistry (Казань, 2019), Международной конференции молодых ученых, студентов и аспирантов «Кирпичниковские чтения» (Казань, 2021, 2024), Международной научно-практической конференции Микитаевские чтения «Новые полимерные композиционные материалы» (Нальчик, 2021).

Соответствие паспорту специальности. Выполненная диссертационная работа соответствует паспорту специальности 1.4.7. Высокомолекулярные соединения, а именно п. 2, 3, 6, 7, 9 области исследований.

Личный вклад автора состоял в формулировании основной цели и задач диссертационной работы, формулировании способов и методов их решения и анализе полученных результатов. При непосредственном участии автора защищены кандидатские диссертации: Мазильникова А.И., Джаббарова И.М. и Файзулиной 3.3.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-43-160002), Российского научного фонда (грант № 23-23-10012), государственного задания в сфере научных исследований по заданию Министерства образования и науки РФ (проект № 4.5135.2017/8.9), программы «У.М.Н.И.К» Фонда содействия развитию малых форм предприятий в научно-технической сфере (Казань, 2012).

Публикации. Основное содержание диссертации изложено в 23 научных публикациях, в том числе 13 статьях, индексируемых в системе Web of Science и Scopus, 59 тезисах докладов, представленных на российских и международных научных конференциях, получено 2 патента $P\Phi$.

Объем и структура диссертации. Диссертационная работа состоит из введения, трех глав, заключения, списка цитированной литературы (513 наименований). Работа изложена на 340 страницах, включает 30 таблиц и 161 рисунок.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1 Синтез и исследование свойств полимеров на основе МИА и 2,4-ТДИ

Синтез и исследование амфифильных блок-сополимеров является одним из перспективных подходов для создания новых материалов. Направленное регулирование свойств полимеров, получаемых на базе амфифильных блок-сополимеров, в том числе и их газотранспортных характеристик, становится возможным путем изменения как соотношения, так и природы гибких и жестких блоков. Перспективными для решения поставленных задач оказались микро- и мезопористые полимеры с управляемым размером пор и химическим строением их внутренней поверхности, получаемые на основе 2,4-толуилендиизоцианата (2,4-ТДИ) и

макроинициаторов анионной природы (МИА). В этом случае существует возможность оказывать значительное влияние на способность изоцианатных групп (-N=C=O) к раскрытию как по N=C, так и по C=O составляющим и создания таким образом новых макромолекулярных архитектур. Результатом раскрытия изоцианатных групп по связи N=C является образование полиизоцианатов амидной природы (ПИА). В условиях отсутствия стабилизаторов активного центра в случае ПИА протекает их последующая циклизация и формирование изоциануратных циклических структур. При раскрытии изоцианатных групп по связи C=O становится возможным формирование полиизоцианатов ацетальной природы (ПИО). Следует отметить, что в литературе практически отсутствуют сведения о получении полиизоцианатов ацетальной природы и их детальная характеристика.

Инициированное раскрытие изоцианатных групп по карбонильной составляющей, приводящее к формированию полиизоцианатов ацетальной природы, является перспективным ввиду возможности получения компланарных блоков в составе блок-сополимеров. В таких полимерах ПИО составляющая способна не только создавать механически прочный каркас, но и формировать микро- и мезоразмерные пустоты, а гибкие сегменты в составе МИА приводить к образованию уникальных надмолекулярных структур. Несмотря на то, что такие структуры создают возможность активного влияния на надмолекулярную организацию блок-сополимеров, они остаются практически не изученными.

представленной диссертационной работе макроинициаторов анионной природы были предварительно исследованы терминированные калий-алкоголятными группами сополимеры, получаемые на основе пропиленоксида (ПО) и этиленоксида (ЭО), различающиеся молекулярной массой и протяженностью периферийных полиэтиленоксидных (ПЭО) блоков. В качестве макроинициатора было также логично исследовать гомополимеры этиленоксида и пропиленоксида, содержащие терминальные калий-алкоголятные группы. Для этого были $(\Pi \ni O-4000)$ MM = 4000использованы полиэтиленоксид полипропиленоксид с ММ=4000 (ППО-4000), содержащие терминальные калий-алкоголятные группы. Было установлено, что при взаимодействии ПЭО-4000 с 2,4-толуилендиизоцианатом в широком диапазоне его мольного избытка относительно ПЭО-4000 (от 5 до 25) образуется полимер, проявляющий высокую гидрофильность, низкую прочность и высокую деформацию. Согласно ИК-спектроскопическим пластическую исследованиям в этом случае не образуются ПИО. При взаимодействии ППО-4000 с 2,4-толуилендиизоцианатом в широком диапазоне его мольного избытка относительно ППО-4000 (от 5 до 25) так же не наблюдается раскрытие изоцианатных групп по карбонильной составляющей, а образующийся полимер представляет собой стеклообразую массу. Было также исследовано влияние молекулярной массы блок-сополимеров пропилен- и этиленоксидов

(Л3030, Л4230 и Л6030, где ММ составляют 3000, 4200 и 6000 соответственно), протяженность периферийных ПЭО блоков в которых выдерживалась постоянной и соответствовала их содержанию 30 % относительно общего содержания ППО и ПЭО блоков, на эффективность активируемого ими раскрытия изоцианатных групп по карбонильной формирования блок-сополимеров, составляющей. Для содержащих преимущественно полиизоцианатные структуры ацетальной наиболее благоприятным оказался Л4230. Оказалось, что для достижения высокой степени превращения 2,4-ТДИ в ПИО блоки при взаимодействии с Л4230, необходимо создать определённые реакционные условия, которые включают температуру синтеза, природу растворителя и необходимость использования сокатализаторов. Кроме того, для возможности стабилизации ПИО блоков необходимо предотвращение процессов деполимеризации, которые могут быть обусловлены не только присутствием активных центров анионной полимеризации, но и термодинамическими факторами.

1.1 Исследование влияния реакционных условий на закономерности взаимодействия МИА с 2,4-ТДИ

Для проведения предварительных исследований и установления основных закономерностей взаимодействия Л4230 с 2,4-ТДИ в качестве макроинициатора был использован Л4230, то есть Л4200, содержащий 30% терминальных ПЭО блоков. Путём предварительных исследований было также установлено, что наиболее приемлемым мольным соотношением для синтеза ОБС является [Л4230]:[2,4-ТДИ]=1:15. При подборе природы растворителя учитывался тот факт, что полиприсоединение с участием 2,4-ТДИ и Л4230 инициируется активным центром анионной природы. В связи с этим в качестве среды для проведения взаимодействия был использован растворитель полярной природы – этилацетат (ЭА) марки «ХЧ», закупленный у различных производителей. Оказалось, что в зависимости от производителя и даже партии, ЭА содержит различное количество уксусной кислоты (УК) и воды. Предварительно было установлено, что возможность протекания полиприсоединения с участием 2,4-ТДИ и Л4230, сопровождаемая преимущественным формированием ПИО блоков, определяется содержанием в составе ЭА уксусной кислоты и воды. В связи с неустойчивостью этих показателей для разных партий ЭА в качестве растворителя был использован толуол, который благодаря способу его получения и углеводородной, т.е. неполярной, природе не может содержать примесей кислот и остаточной влаги. Было также предварительно установлено, что в среде тех партий ЭА, которые оказались наиболее благоприятными для получения содержащих жесткие полиизоцианатные блоки ацетальной природы, образование ОБС не наблюдалось в том случае, когда 2,4-ТДИ был заменён на монофункциональный фенилизоцианат (ФИЦ).

В структуре 2,4-ТДИ в отличие от ФИЦ содержатся две неравноценные по реакционной способности изоцианатные группы. Наиболее

активной является группа NCO napa-положения. То есть, группа NCO napaположения вступает в реакционный процесс в первую очередь. Учитывая низкую реакционную способность изоцианатной группы орто-положения и её затрудненное стерическое расположение в структуре ПИО следовало ожидать, что она не сможет принять участие в реакции полиприсоединения. Однако, получения невозможность ПИО блоков использованием монофункционального ФИЦ взамен 2,4-ТДИ позволило предположить ключевую роль изоцианатной группы орто-положения в стабилизации структуры ПИО, полученного с использованием 2,4-ТДИ. То, что в данном случае содержание воды в составе этилацетата влияет на возможность преимущественного образования ПИО блоков в ОБС позволило сделать предположение, что именно реакция NCO группы *орто*-положения с водой, сопровождающаяся образованием карбамида (мочевины) является тем самым стабилизирующим фактором, которого не может быть в случае использования ФИЦ.

В связи со сделанным предположением в толуол дополнительно триэтиламина обосновывалось вводилась вода. использование воздействия необходимостью каталитического на взаимодействие изоцианатных групп с молекулами воды. Количество воды бралось эквимольно содержанию в реакционной системе изоцианатных групп ортоположения. Количество УК и бисфенола-А (БФА), необходимое для осуществления наиболее полного превращения 2,4-ТДИ в ПИО блоки, было подобрано экспериментальным путём. Для подтверждения сделанных предположений полимерные плёночные образцы ОБС были получены в среде толуола (1), в среде толуола с экспериментально подобранными количествами воды и ТЭА (2), в среде толуола, в который были предварительно введены в каталитических количествах уксусная кислота и БФА (3), в среде ЭА (4), в среде толуола, содержащего наравне с УК и БФА экспериментально подобранные количества ТЭА и воды (5). Согласно ИК-спектрам (рис. 1), при использовании в качестве растворителя ЭА в результате взаимодействия Л4230 и 2,4-ТДИ в полимерной матрице наравне с ПИО блоками образуются и полиизоциануратные (ПИ) фрагменты. Так, на ИК- спектрах можно выделить полосы при 1711 см-1 и 1411 см-1. Эти области колебательной спектроскопии характерны для связи С=О в составе изоциануратов. Характерным для ОБС, полученных на основе Л4230 и 2,4-ТДИ в среде ЭА является также появление малоинтенсивного плеча при 1622 см⁻¹, которое соответствует связи C=O в составе группы -NH-C(O)-NH-. Это означает, что часть NCO групп, входящих в состав 2,4-ТДИ, была израсходована на взаимодействие с влагой, которая присутствует в ЭА. В связи с тем, что ОБС синтезировали в условиях 15-кратного мольного избытка 2,4-ТДИ относительно Л4230, на участие в реакции уретанообразования могла быть израсходована только небольшая часть изоцианатных групп (не более 2 молей

из использованных 15 молей). Так, на ИК-спектрах наблюдается плечо при 1728 см⁻¹, характерное для карбонила в составе уретановых групп.

интересным Наиболее ожидаемым И данном спектроскопическом анализе фактом является присутствие малоинтенсивной полосы при 1671 см-1, обусловленной аналитической колебаниями связи N=C в составе полиизоцианатов ацетальной природы, являющихся элементарным звеном образующихся здесь ПИО блоков. В составе ПИО блоков присутствует также связь -С-О-, валентные колебания которой проявляются в области 1226 см-1. В условиях использования толуола в качестве среды для взаимодействия Л4230 и 2,4-ТДИ происходит полиизоциануратов как образование основного продукта. обстоятельству соответствует возрастание вклада в общую интенсивность полос при 1711 см⁻¹ и 1411 см⁻¹. Напротив, интенсивность полос при 1225 см⁻¹ и 1670 см-1 в этом случае уменьшается. Оказалось, что при использовании толуола в качестве среды для взаимодействия, а также дозированных количеств воды и ТЭА, УК и БФА в качестве сокатализаторов, наблюдается значимое уменьшение интенсивности аналитических полос при 1711 см⁻¹ и 1411 см-1. При этом возникает полоса при 1671 см-1, которая отражает валентные колебания N=C связи в составе ПИО. Кроме того, в области 1619 см-1 появляется плечо, которое обусловлено валентными колебаниями связи C=O в составе карбамида и растёт интенсивность полосы при 1225 см⁻¹.

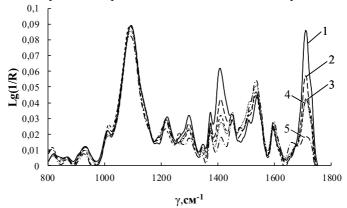


Рисунок 1 – ИК-спектры ОБС, полученных на основе [Л4230]:[2,4-ТДИ]=1:15 и при $T_{\it синтеза}$ = 20 °C. Среда и использованные добавки: толуол, без добавок (1); толуол, H_2O , $T\ni A$ (2); толуол, YK, $E\Phi A$, (3); $E\Phi A$, (4); толуол, $E\Phi A$, $E\Phi A$,

Плёночные образцы полученных полимеров были исследованы с использованием метода термомеханического анализа. Результаты ТМА анализа согласуются с данными ИК-спектроскопии. Были также проведены сравнительные исследования на основе измерений температурных зависимостей тангенса угла диэлектрических потерь. Было выявлено, что

температурные условия являются важным фактором влияния на механизм раскрытия NCO групп 2,4-толуилендиизоцианата, инициируемого Л4230.

Рисунок 2 – Схема взаимодействия в реакционной системе на основе [Л4230]: [2,4-ТДИ]=1:15 в присутствии дозированных количеств H_2O и ТЭА, УК, БФА

В связи с тем, что блочные структуры полиизоцианатов ацетальной природы могут создавать элементы сопряжения с участием связи C=N и бензольного кольца представлялось необходимым провести измерения значений удельного объемного электрического сопротивления (ρ_v) для образцов, полученных при [Л4230]:[2,4-ТДИ]=1:15 и T_{cun} = 20 °C в различных реакционных условиях. Для сравнения — значения ρ_v для полимеров, синтезированных в среде толуола достигают $1,0\cdot10^{14}$ Ом·см, а для образцов полимера, полученного в среде толуола в присутствии УК, БФА, ТЭА и H_2O составляют уже $1,4\cdot10^{11}$ Ом·см. Значения ρ_v проявляют выраженную зависимость и от температуры синтеза ОБС. Так, образец ОБС, температура синтеза которого составила 2 °C, проявляет наименьшее значение ρ_v , которое составляет $1,7\cdot10^{11}$ Ом·см. Для образцов ОБС, синтезированных при более высоких температурах, значения ρ_v могут повыситься в 8 раз, свидетельствуя об уменьшающихся возможностях образования полиизоцианатов ацетальной природы в полимерной матрице по мере роста температуры синтеза ОБС.

Было также установлено, что молекулы воды под каталитическим воздействием ТЭА взаимодействуют с изоцианатными группами *орто*положения соседствующих ПИО блоков с последующим образованием карбамидов, которые и являются причиной объединения этих блоков (рис. 2).

1.2 Исследование влияния содержания ПЭО блоков в составе Л4200 на строение, свойства и надмолекулярную структуру ОБС

Так как активные центры используемого в данной работе макроинициатора Л4200 представляют собой калий-алкоголятные группы, являющиеся составной частью терминальных этиленоксидных звеньев, было исследовано влияние протяжённости ПЭО блоков в составе Л4200 на формирование надмолекулярной структуры ОБС и их свойства. Было установлено, что при отсутствии в составе макроинициаторов терминальных ПЭО блоков (в этом качестве был использован содержащий концевые калийалкоголятные группы полипропиленоксид с ММ=4000) и при использовании каталитических количеств УК, БФА, ТЭА, Н₂О и относительно низких температур, реакция ППО с 2,4-ТДИ сопровождается образованием стеклообразного продукта. В этом случае, согласно ИК-спектрам (наличие аналитических полос в области 1711 и 1411 см-1), происходит образование исключительно полиизоциануратов. Это обстоятельство подтверждает особенность строения Л4200, которая является ключевой в возможности осуществления раскрытия изоцианатных групп карбонильной ПО составляющей. Следует также отметить, что для протекания такого необычного раскрытия NCO групп необходимо поддержание установленных выше реакционных условий. К ним относятся использование каталитических добавок УК, БФА, ТЭА, воды, поддержание температур ниже 20 °C и низкого содержания сухих веществ (около 17 мас.%) в реакционном растворе. Для обозначения содержания ПЭО блоков в составе Л4200 на свойства ОБС были использованы следующие условные обозначения. Так, Л4200 с содержанием 15, 20, 30 и 40 мас.% терминальных ПЭО блоков принимает вид Л4215, Л4220, Л4230 и Л4240 соответственно. Было установлено, что изменение содержания ПЭО блоков в составе Л4200 от 15 до 30%, не оказывает влияния на характер проявления ИК-спектров ОБС. Установленные выше относительно низкие температурные условия синтеза также одинаково влияют на способность концевых калий-алкоголятных групп Л4200, содержащих от 15 до 30 % ПЭО блоков, инициировать раскрытие изоцианатных групп 2,4-ТДИ по С=О связи в условиях использования каталитических количеств УК, БФА, ТЭА и воды. Таким образом, наличие периферийных ПЭО блоков является необходимым инициированного воздействия условием Л4200 2,4-ТДИ, сопровождающегося раскрытием изоцианатных групп по карбонильной составляющей. На основе сделанных выводов для последующих исследований использовали Л4215, Л4220, Л4230 и Л4240.

Так Л4200 как является амфифильным блок-сополимером пропиленоксида и этиленоксида, измерения температурных зависимостей тангенсов угла диэлектрических и механических потерь ОБС, получаемых на их основе, дают информацию не только о микрофазовом разделении жесткоцепных и гибкоцепных сегментов, но и об объединении ППО и ПЭО блоков внутри гибкоцепной составляющей в надмолекулярной структуре проведённым измерениям, характер температурных Согласно зависимостей тангенса угла диэлектрических потерь (tgδ) заметно зависит от содержания ПЭО блоков в составе Л4200 (рис. 3а). Для Л4230 наблюдается одна область α-перехода, соответствующая -47 °C. Это означает, что в данном случае ППО и ПЭО блоки сосуществуют в одной микрофазе. Для Л4240 переход при -47 °C принимает форму плеча, а пиковая зона α-перехода смещается до температуры -30 °C. Уменьшение же доли ПЭО блоков до 20 и 15 % в составе Л4215 и Л4220 и соответственно увеличение доли ППО блоков приводит к тому, что плечо в области -27 °C становится более выраженным. Наблюдаемая наименьшая температура стеклования, соответствующая области -47 °C, обусловлена процессами α-перехода ППО блока, а зона αперехода при -27 °C, соотнесена с началом сегментальной подвижности ПЭО блока.

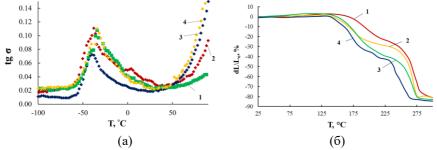


Рисунок 3 — Температурные зависимости тангенса угла диэлектрических потерь ($tg\delta$) (а) и ТМА (б) для ОБС, полученных при [Л-4230]:[2,4-ТДИ]=1:15. Содержание ПЭО — 15 (1), 20 (2), 30 (3), 40 (4), мас.%

Обнаруженные различия на температурных зависимостях тангенса угла диэлектрических потерь являются следствием того, что в процессе формирования надмолекулярной структуры полученных полимеров имеет место микрофазовое разделение не только гибкоцепного и жесткоцепного блоков, но и выделение в отдельные микрофазы ПЭО и ППО блоков. Степень их разделения, как показали измерения температурных зависимостей tgδ, определяется протяжённостью терминальных ПЭО блоков в структуре Л4200.

Полученные кривые ТМА были использованы для изучения механического поведения полимеров в высокотемпературной области. В этой области может происходить разрушение межмолекулярных связей в надмолекулярных структурах, образованных на основе жесткоцепной

составляющей (в данной работе полиизоцианатных блоков ацетальной природы). Для измерения кривых термомеханического анализа (рис. 3.б) также были использованы образцы ОБС, полученные при [Л4230]:[2,4-ТДИ]=1:15, в среде толуола в условиях использования каталитических количеств уксусной кислоты, БФА, триэтиламина и воды при температуре 2 °C и содержании нелетучих компонентов 17 мас.%. Полученные фрагменты кривых ТМА, на которых наблюдается несколько релаксационных процессов, отражают сложность надмолекулярной структуры ОБС. Увеличение содержания терминальных ПЭО блоков в составе Л4200 от 15 до 40 мас.% ведет к смещению температуры начала релаксационных переходов, межмолекулярных обусловленных распадом связей полиизоцианатными блоками ацетальной природы, со 170 до 150 °C, то есть в более низкотемпературную область.

Результаты проведенных исследований позволили сделать вывод о том, что при содержании ПЭО блоков 30-40 мас.% полиизоцианатные блоки ацетальной природы упакованы более рыхло. ОБС, полученные с использованием Л4215 и Л4220 характеризуются более плотной упаковкой жёстких блоков. Полученные результаты свидетельствуют также о том, что основным элементом надмолекулярной организации исследуемых полимеров являются ПИО блоки. Домены, сформированные с их участием, отличаются стабильностью в высокотемпературной области. Так, для ОБС, полученного при использовании Л4215, значения деформации 27 % достигаются только при 250 °C. Деформация образцов, сопровождающая повышение температуры от 250 °C, связана с процессами термодеструкции полимеров. Для исследования поверхности ОБС была морфологии использована атомно-силовая микроскопия (рис. 4).

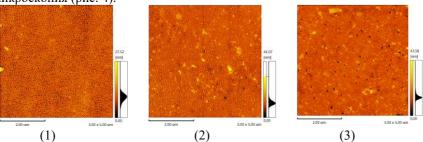


Рисунок 4 — АСМ изображения морфологии поверхности для образцов ОБС, полученных с использованием толуола в качестве растворителя и с применением УК, БФА, воды и ТЭА. Содержание ПЭО — 15 (1), 20 (2), 30 (3), мас.%

Согласно рисунку 4, для образцов ОБС, полученных на основе Л4215 и Л4220 с использованием каталитических количеств УК, БФА, ТЭА, H_2O и толуола в качестве среды сохраняется вид рельефа поверхности образцов. Было исследовано влияние содержания ПЭО блоков в составе Л4200 на

поверхностные свойства ОБС и их сорбционную активность. Оценка влияния содержания ПЭО в составе Л4200 на химическое строение внутренней полости пустот была проведена путем исследования сорбционной активности органического реагента Родамина 6G (R6G) на ОБС (рис. 5).

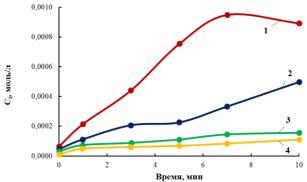


Рисунок 5 — Временные зависимости сорбции R6G на образцы ОБС. Содержание Π ЭО — 15 (1), 20 (2), 30 (3), 40 (4), мас.%

Было установлено, что для плёночных образцов ОБС, полученных с использованием Л4215 наблюдается наиболее высокая эффективность сорбции R6G. При этом концентрация R6G, сорбированного на ОБС, сравнима с его концентраций в использованном для проведения сорбции растворе R6G в этаноле. Для ОБС, полученных с использованием Л4220, эффективность сорбции R6G из его раствора в этаноле ниже в сравнении с ОБС, полученным с использованием Л4215. ОБС, полученные на основе Л4230 и Л4240 способны сорбировать на себя ещё меньшее количество красителя R6G. Более высокая эффективность сорбции красителя R6G на ОБС, полученного с использованием Л4215 обусловлена тем, что на поверхность пустот в этом случае ложится ППО составляющая, способная задерживать молекулы R6G. По мере повышения содержания ПЭО в Л4200 поверхность пустот выстроена преимущественно из ПИО блоков, проявляя наименьшую способность к удерживанию как красителя R6G, так и других OP.

1.3 Газотранспортные характеристики ОБС

Для ОБС, полученных при различном содержании ПЭО составляющей в составе исходного Л4200, были исследованы их газотранспортные свойства. Газообразными веществами служили He, N_2 , CH_4 , CO_2 , H_2S и NH_3 (табл. 1-6). Было установлено, что проницаемость сквозь ОБС для полярных молекул H_2S и NH_3 в значительной степени превышает коэффициент проницаемости (P), полученный для неполярных молекул He, N_2 и CH_4 . Относительно высокие значения проницаемости наблюдаются и для CO_2 . При этом, протяжённость ПЭО в составе Л4200 оказывает небольшое влияние на значения проницаемости для всех изученных газов. При

проведении испытаний были достигнуты высокие значения селективности для смесей газов, содержащих полярные и неполярные молекулы. Для использованных при проведении исследований газов коэффициент диффузии растет с увеличением в составе ОБС доли ПЭО составляющей. Полученные закономерности согласуются с предположением, согласно которому на поверхность пустот в структуре ОБС, полученных на основе Л4215 и Л4220, выступает ППО составляющая, приводя к понижению объёма внутреннего пространства пустот.

Значения коэффициентов сорбции для NH_3 и H_2S оказались значительно более высокими в сравнении с коэффициентами сорбции, полученными для газов неполярной природы. Изменение значений коэффициента сорбции для ОБС мембран от содержания ПЭО в составе Л4200 для всех изучаемых газов носит экстремальный характер. С увеличением содержания ПЭО составляющих коэффициент сорбции сначала падает, а затем начинает возрастать.

В том случае, когда ОБС преимущественно содержат ПИО блоки, изменение протяжённости полиэтиленоксидного сегмента влечет заметные изменения в механическом поведении полимеров (рис. 6). При этом наблюдается изменение формы кривых и закономерное увеличение относительного удлинения при разрыве образцов с ростом протяженности ПЭО в составе Л4200, отражающие различия в надмолекулярной организации ОБС

Таблица 1 – Значения Р для ОБС, полученные при давлении 1 атм.

ПЭО, мас.% в	Р, Баррер					
составе Л4200	Не	N_2	CH ₄	CO_2	NH ₃	H_2S
15	11	1,5	3	110	587	507
20	5,5	1,7	12	134	563	520
30	19	3,1	11	102	489	454
40	17	2	8	117	693	657

Таблица 2 – Коэффициенты диффузии для ОБС

Twentigue 2 Tree population in Autopolitical Autopolitica Autopolitical Autopolitical Autopolitical Autopolitical Autopolitical Autopolitical Autopolitical Autopolitical Autopolitical							
ПЭО, мас.% в	$D \times 10^{10}$, $M^2 \cdot c^{-1}$						
составе Л4200	Не	N_2	CH ₄	CO_2	NH ₃	H_2S	
15	0,10	0,02	0,06	0,28	0,30	0,33	
20	0,22	0,22	0,36	0,71	0,62	0,66	
30	0,99	0,24	0,53	2,73	2,37	0,10	
40	0,84	0,28	0,54	2,89	3,08	4,62	

Таолица 3 – Коэффициенты сороции для ОВС								
ПЭО, мас.% в	$S \times 10^5$, моль·м ⁻³ Па ⁻¹							
составе Л4200	Не	N_2	CH ₄	CO_2	NH ₃	H_2S		
15	35	21	18	133	665	510		
20	8,5	3	11	63	303	264		
30	65	44	72	125	690	381		
40	67	23	48	136	755	476		

Таблица 3 – Коэффициенты сорбции для ОБС

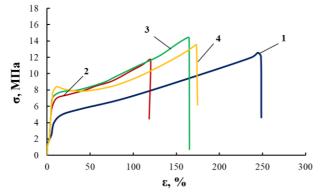


Рисунок 6 — Зависимости напряжение — деформация для ОБС. Содержание ПЭО в составе Л4200 - 0 (1); 15 (2); 20 (3); 30 (4) мас.%

При использовании Л4215 в синтезе ОБС полипропиленоксидные блоки располагаются на поверхности внутренней полости пустот, сформированных ПИО блоками. При использовании Л4230 в синтезе ОБС гибкоцепная составляющая образует собственную микрофазу вне зоны сегрегации жестких ПИО блоков. Вследствие этого каркасность надмолекулярной структуры получаемых блок-сополимеров усиливается, приводя к уменьшению относительного удлинения пленочных полимерных образцов при разрыве.

2. Синтез ОБС с использованием Gl-POSS

Симметричность, выстраивание в одной плоскости полиизоцианатных структур ацетальной природы (ПИО) в сочетании с амфифильностью составляющей гибкоцепной лежат В основе ячеистой геометрии надмолекулярной структуры ОБС и формирования пустот. Способность ПИО блоков создавать каркасные структуры и существование оксанионов в качестве основной составляющей активного центра полиприсоединения использования полиэдральных предпосылкой силсесквиоксанов, функционализированных эпоксидной группой (Gl-POSS) в элемента дизайна надмолекулярной структуры качестве таких полимеробразующих системах. Для получения серии образцов была использована реакционная система, в которой мольное соотношение Л4230 и 2,4-ТДИ выдерживалось постоянным и составляло [Л4230]:[2,4-ТДИ]=1:15, а содержание Gl-POSS изменялось в диапазоне 0,1-20 мас.%. Для проведения синтеза ОБС (ОБС-Gl-POSS) в присутствии Gl-POSS в качестве среды был использован этилацетат. Выбор ЭА был обусловлен хорошей растворимостью в нём Gl-POSS и тем обстоятельством, что ЭА всегда содержит остаточные количества воды и УК. В процессе всех синтезов использовался ЭА одной марки. Результаты золь-гель анализа показали практически полное вовлечение реагентов в полимеризационные процессы. направлением взаимодействия в изученной реакционной системе является полиприсоединение 2,4-ТДИ и инициированное концевым ПИО звеном раскрытие эпоксидного кольца. Далее NCO-группы пара-положения вовлекаются в полиприсоединение, а NCO-группы орто-положения – во взаимодействие с латентной водой с последующим формированием мочевины в процессе отверждения. Использование Gl-POSS оказывает значительное влияние на механическое поведение OБC-Gl-POSS. Так же, как и контрольный образец ОБС, полученный без использования Gl-POSS, полимеры являются высокомодульными и не являются типичными эластомерами. Само значение напряжения при деформациях удлинения 7-8 % для OБC-Gl-POSS зависит от содержания Gl-POSS и достигает 60 МПа при 2 % Gl-POSS. При содержании 10 % Gl-POSS значение напряжения при деформациях удлинения 7-8 % заметно падает и возникает высокоэластическая деформация. О том, что деформация не является пластической, судили по тому, что геометрические размеры образцов, подвергнутых разрушительному удлинению, возвращались к исходным значениям в течение 2-5 минут после приложенного напряжения и последующего разрыва. Оказалось, что механические характеристики ОБС-Gl-POSS определяются количеством использованного Gl-POSS. Зависимости разрушающего напряжения и удлинения при разрыве от содержания в полимере Gl-POSS согласуются с проведенным анализом температурных зависимостей тангенса угла диэлектрических и механических потерь. Так, при содержании Gl-POSS 2, 5 и 10 мас.% наблюдается многократный рост разрушающего напряжения, сопровождающийся резким понижением удлинения при разрушающем напряжении (рис. 7).

На рисунке 8 приведены кривые температурных зависимостей тангенса угла диэлектрических потерь для OБC-Gl-POSS. В области содержания Gl-POSS 2 и 5 мас.% характер кривых тангенса угла диэлектрических потерь заметно отличается от областей, где содержание Gl-POSS составляет менее 2 и более 5 мас.%. Так, для образцов, полученных без использования Gl-POSS и с введением 0,5 мас.% Gl-POSS наблюдаются две области α -переходов при -47 °C и -27 °C. Наименьшая температура стеклования в области -47 °C соответствует полиэтиленоксидному блоку.

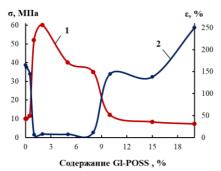


Рисунок 7 — Зависимости разрушающего напряжения (1) и относительного удлинения при разрыве (2) для OБC-Gl-POSS от содержания Gl-POSS

Пик на температурной зависимости тангенса угла диэлектрических потерь при -27 °C для OБC-Gl-POSS с наибольшей вероятностью обусловлен началом сегментальной подвижности (α -переходом) пропиленоксидного блока. При содержании Gl-POSS 2 и 5 мас.% α -переход при -47 °C практически исчезает и остается только область α -перехода в области -27 °C. Эти данные свидетельствуют о том, что в создавшихся обстоятельствах ПЭО составляющая, непосредственно примыкающая к жесткому ПИО блоку, вовлекается в область формирования узлов пространственной полимерной сетки и теряет способность к обособлению.

Для OБC-Gl-POSS, полученных с использованием 10, 15 и 20 мас.% Gl-POSS более выраженным, но в то же время широким является α-переход в области от -47 °C до -42 °C. Наличие только одного пика в области α-перехода является следствием того, что при таких высоких содержаниях Gl-POSS нарушается каркасная надмолекулярная структура и ее регулярность. Вследствие этого нарушаются условия для совершенства микрофазового разделения ППО и ПЭО блоков гибкоцепной составляющей.

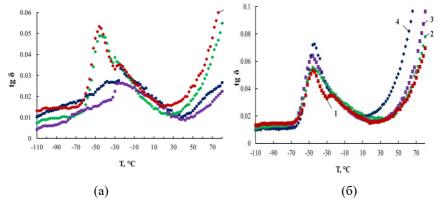


Рисунок 8 — Температурные зависимости тангенса угла диэлектрических потерь для OБC-Gl-POSS, полученных при содержании Gl-POSS: 0 (1), 0,5 (2), 2 (3), 5 (4) (a) мас.% и Gl-POSS: 0 (1), 10 (2), 15 (3), 20 (4) мас.% (б)

2.1. Исследования с использованием рентгеноструктурного анализа

Данные рентгенофазового анализа образцов OБС-Gl-POSS с различным содержанием Gl-POSS свидетельствуют об отсутствии в них кристаллических фаз и аморфном состоянии образцов, что позволяет предположить, что ассоциации молекул Gl-POSS в нанокристаллиты не происходит. Малоугловое рентгеновское рассеяние OБС-Gl-POSS указывает на микрофазовое разделение жестких и гибких компонентов в этих системах и образование упорядоченных супрамолекулярных систем паракристаллического типа. В этом случае двумерные картины соответствуют рассеянию на изотропных системах, о чем свидетельствует равномерное распределение интенсивности вокруг первичного рентгеновского пучка.

На рисунке 9 представлены одномерные кривые малоуглового рентгеновского рассеяния для OБС-Gl-POSS с различным содержанием Gl-POSS, полученные путем интегрирования двумерных картин. Анализ кривых рассеяния указывает на близкий характер углового распределения интенсивности малоуглового рентгеновского рассеяния для всех образцов. Это обстоятельство, в свою очередь, может свидетельствовать об отсутствии существенных структурных изменений в образцах.

Интерференционные пики свидетельствуют о структурном упорядочении образцов, т.е. о наличии доменов и их упорядоченном расположении в объеме образцов. Параметры такого упорядочения достаточно близки для всех исследованных образцов. Параметры паракристаллической решетки d в исследованных образцах (расстояние между центрами доменов) лежат в диапазоне 85,3-82,0 Å. Для полимера с содержанием Gl-POSS 5 мас.% параметр d заметно меньше и равен 79,1 Å. Оценка средних размеров областей паракристаллического упорядочения (Long range order) приводит к значению 273,1 Å для полимера с содержанием Gl-POSS 5 мас.% и к диапазону 330,2-371,8 Å для остальных образцов. Характерной особенностью картины рассеяния образца OБC-Gl-POSS с наибольшим содержанием GI-POSS (15 мас.%) является интенсивное рассеяние в области наименьших углов рассеяния, что обусловлено, прежде всего, присутствием крупных неоднородностей, размеры приближаются к верхнему пределу измеряемых данным методом значений (10 - 800 Å). Учитывая принцип Бабине, с равным правом под этими неоднородностями можно понимать не только более плотные (по сравнению с матрицей) домены, но и пустоты – поры. Однако в случае наличия таких пор рассеяние от них должно исчезнуть в случае уменьшения контраста при их заполнении чем-либо, например, растворителем или водой. Для проверки этой гипотезы все образцы выдерживали в воде в течение нескольких часов и повторяли с ними малоугловые рентгеновские эксперименты. Для каждого из образцов получены три двумерные картины малоуглового рентгеновского рассеяния, соответствующие исходному состоянию, набухшему состоянию и после 2-дневной их выдержки в комнатных условиях.

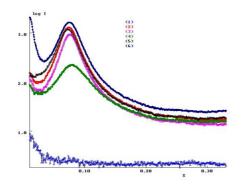
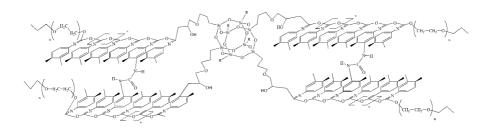



Рисунок 9 - Малоугловые кривые, полученные в результате интегрирования двумерных картин рассеяния при 23 °С (в логарифмическом масштабе): фоновое рассеяние (1) и для ОБС-Gl-POSS с содержанием Gl-POSS: 0,1 (2), 0,5 (3), 5 (4), 10 (5) и 15 (6) мас.%. Вектор рассеяния $s=4\pi Sin\theta/\lambda$, Å-1; $\lambda=1,5418$ Å длина волны рентгеновского луча

Можно отметить, что для ОБС-Gl-POSS с наибольшим содержанием Gl-POSS (15 мас.%) наблюдается необратимое исчезновение рассеяния в области наименьших углов, что в некоторой степени подтверждает предположение о наличии пустот в этом образце. Анализ данных OБC-Gl-POSS, полученных до набухания, после набухания в воде и после отстаивания в комнатных условиях, позволил подтвердить выводы, основанные на физико-механических испытаний. Поглощение исследуемыми образцами осуществляется в пустоты и не приводит к нарушению каркасной надмолекулярной структуры за счет жесткости и преимущественного вклада в ее образование химических, межмолекулярных связей. Размер пор измеряли с помощью порометра вытеснения газ-жидкость POROLUXTM 500. Максимальный размер пор составляет менее 9 нм для диапазона 0,1-2 мас.% Gl-POSS и менее 6 нм для диапазона 5-8 мас.% Gl-POSS. Полученные результаты свидетельствуют о том, что ПИО блоки являются ключевым элементом макромолекулярной архитектуры исследованных полимеров. Благодаря этому домены стабильны при высоких температурах и это позволяет предположить, что наряду с мочевиной, образующейся в результате реакции изоцианатных групп орто-2,4-ТДИ, полиизоцианатные положения блоки ацетальной стабилизируются и за счёт химического связывания Gl-POSS согласно схеме:

Значения проницаемости для исследованных в качестве мембран OБС-Gl-POSS, измеренные при 1,1 бар и температуре окружающей среды, представлены в таблице 4. Образцы малопроницаемы для молекул N_2 и H_2 , и проявляют высокие значения проницаемости для аммиака.

Таблица 4 - Коэффициенты проницаемости ОБС-Gl-POSS

Gl-	,		,				
POSS	0	0,1	0,5	1,0	2,0	5,0	8,0
мас.%							
N_2	3,1±0.4	1,5±0,2	1,8±0,3	1,9±0,3	95±9	102±8	120±7
H ₂	4,7±0.6	8,1±0,9	32,6±3	49±5	42±4	54±5	120±8
NH ₃	489±20	716±22	841±25	1032±21	434±17	528±21	210±11

3. Синтез и исследование устойчивых к самоконденсации кремнезёмных каркасов

Структура Gl-POSS относится к силсесквиоксанам. В предыдущем разделе было показано, что эти соединения оказывают значительное воздействие на свойства ОБС. В связи с этим представляло интерес провести собственную разработку структур, содержащих центральное кубическое ядро окружённое функциональными олигомерными разветвлениями. Основными соединениями для проведения реакции явились тетраэтоксисилан (ТЭОС) и 3-аминопропилтриэтоксисилан (АГМ-9). Использование ТЭОС предоставляет возможность получения кубического ядра SiO₂, а при использовании АГМ-9 открывается возможность создания разветвлённых силсесквиоксановых структур. Основной и при этом трудно решаемой задачей в этом направлении является преодоление процессов самоконденсации этих продуктов в связи с высокой склонностью алкоксизамещённых производных кремнезёма к реакциям гидролиза и последующей конденсации образующихся при этом силанольных функциональных групп. Решающее значение для преодоления процессов конденсации имеет управление скоростью процесса путём подбора соответствующего катализатора, стадийности, времени и температурных условий проведения процесса.

3.1 Синтез и исследование строения PSiO2C, получаемых с использованием ТЭОС

Для получения устойчивых к самоконденсации кремнезёмных (SiO₂) каркасов (PSiO₂C) на основе тетраэтоксисилана - Si(OCH₂CH₃)₄, были использованы полиэтиленоксид (ПЭО, MM=400) и полидиметилсилоксан (ПДМС, MM=30000). Для создания SiO₂ ядра проводилась реакция гидролиза тетраэтоксисилана латентной водой, присутствующей в ПЭО. В качестве щелочного катализатора был применён диэтиленгликолят калия (ДЭГ-К). Далее следовала поликонденсация образующихся силанольных групп. Оставшиеся не гидролизованными \equiv Si-OCH₂CH₃ фрагменты подвергались реакции переэтерификации полиэтиленоксидом (рис. 10).

$$\begin{array}{c} \text{H} & \begin{array}{c} \text{H}_{2} \\ \text{O} \\ \text{C}_{H_{2}} \end{array} \end{array}) = \begin{array}{c} \text{C}_{2} \\ \text{H}_{3} \\ \text{O} \\ \text{C}_{2} \\ \text{H}_{3} \end{array}) = \begin{array}{c} \text{RO} \\ \text{Si} \\ \text{O} \\ \text{O$$

Рисунок 10 – Схема реакций, протекающих при формировании PSiO2 и PSiO2C

Основываясь на том обстоятельстве, что реакция переэтерификации Si-O-CH₂CH₃ групп в составе ТЭОС посредством Si-OH, входящих в состав ПДМС по своей природе необратима, полидиметилсилоксан вводился в реакционную систему по окончании формирования SiO_2 ядра. Выделяющийся CH_3CH_2OH в результате гидролиза ТЭОС удалялся путём непрерывного вакуумирования реакционной системы.

Для установления завершённости реакции были использованы методы определения размера частиц с использованием динамического светорассеяния, определения поверхностно-активных свойств синтезируемых PSiO2C, ИК-, ²⁹Si ЯМР и ¹Н ЯМР спектроскопии, а также измерения с использованием СЭМ и ПЭМ изображений препарированной водной эмульсии PSiO2C. При использовании метода динамического светорассеяния предварительно были измерены размеры ПЭО и ПДМС. Оказалось, что благодаря ассоциативным взаимодействиям размеры частиц ПЭО в среде толуола находятся в области 450 нм, а для полидиметилсилоксана размер частиц не превышает 10 нм. В то же время для продуктов PSiO2 и PSiO2C наблюдается кардинальное отличие картины распределения по размерам частиц от особенностей распределения, установленных для ПЭО и ПДМС.

Так, наблюдается не менее трёх областей с содержанием частиц, отличающихся своими размерами. Основная доля частиц распределена в широком размерном интервале 60-400 нм с максимальным накоплением в области 150 нм, а образования, наблюдаемые при 10-30 нм характеризуются относительно низкой интенсивностью (рис. 11).

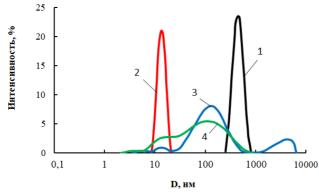


Рисунок 11 — Распределение частиц по размерам для ПЭО (1), ПДМС (2), PSiO2 (3) и PSiO2C (4) в толуоле

Относительно большие размеры частиц PSiO2 и PSiO2C и широкое их распределение может являться следствием ассоциативных взаимодействий с участием полиэтиленоксидных ответвлений. Отсутствие стерических и термодинамических препятствий в структуре PSiO2 в отличие от структуры PSiO2C, содержащей полидиметисилоксановые ответвления, приводит к возможной агломерации части PSiO2 как за счёт ассоциативных взаимодействий, так и объединения частиц до размеров 5000 нм в результате поликонденсационных процессов с участием высвобождаемых в результате гидролиза силанольных групп.

Для ТЭОС, ПДМС, PSiO2 и PSiO2С были измерены спектры 1 Н ЯМР и 29 Si ЯМР. На спектре 29 Si ЯМР, измеренного для ТЭОС, присутствует сигнал с относительной низкой интенсивностью при $\delta = -81,963$ м.д. На спектрах 29 Si ЯМР, измеренных для ПДМС, присутствует резонансный сигнал с химическим сдвигом $\delta = -21,920$ м.д. Измерены также спектры 29 Si ЯМР для PSiO2C. Была обнаружена низкая интенсивность резонансных сигналов с химическим сдвигом $\delta = -82$ м.д., которая подтверждает практически полное отсутствие тетраэтоксисилана в составе PSiO2C и, соответственно, завершённость реакции, представленной на схеме (рис. 10). Существование резонансного сигнала с химическим сдвигом $\delta = -108$ м.д. указывает на существование в структуре PSiO2C производного SiO_2 кубической структуры. Это обстоятельство также подтверждает протекание реакции в соответствии с предложенной схемой. Были исследованы поверхностно-активные свойства PSiO2C и PSiO2, показывающие их способность к самоорганизации и отражающие особенности их строения.

Согласно измерениям концентрационных зависимостей поверхностного натяжения в воде, приведённым на рисунке 12,

полиэтиленоксид проявляет слабые поверхностно-активные свойства и, судя по относительно высокому значению ККМ, присутствует в воде в виде крупных ассоциативных образований. Для PSiO2 характерным является высокое значение ККМ и ступенчатый характер кривой концентрационной зависимости поверхностного натяжения. Полученная зависимость отражает иерархический характер построения агрегатов PSiO2 и возможность образования частиц различающегося строения.

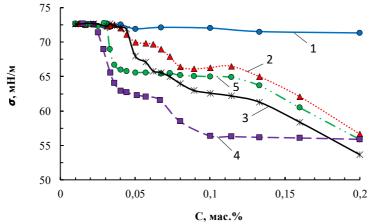
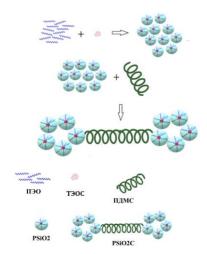



Рисунок 12 — Концентрационные зависимости поверхностного натяжения в воде для ПЭО (1), PSiO2 (2) и PSiO2C, полученных при содержании $[\Pi ДМC] = 1$ (3), 6 (4), 22 (5) мас.%

На закономерности проявления концентрационных зависимостей поверхностного натяжения в воде для PSiO2C оказывает влияние содержание в составе этих продуктов полидиметилсилоксановой составляющей. Так, по мере повышения содержания ПДМС в составе PSiO2C значения поверхностного натяжения падают. Основываясь на результатах проведённых исследований, предложена схема образования PSiO2C и их агрегатов в воде (рис. 13).

Путём частичного замещения тетраэтоксисилана на АГМ-9 синтезированы и исследованы устойчивые к самоконденсации кремнезёмные каркасы, содержащие силсесквиоксановые фрагменты SiO2S-(10–100). Установлено, что по мере увеличения содержания АГМ-9 при синтезе SiO2S возрастает и вероятность формирования силсесквиоксановых структур. ОБС были модифицированы SiO2S-10 и PSiO2 и исследованы в качестве газопроницаемых мембран. Было установлено, что модификация ОБС приводит к повышению коэффициентов диффузии исследуемых газов.

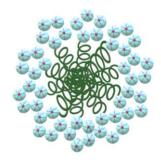


Рисунок 13 — Схема формирования PSiO2 и агрегатов PSiO2C в воде

4. Сшиваемые изоциануратами блок-сополимеры (ИСБС), полученные с использованием Л4230, 2,4-ТДИ и Д4

Разработан новый подход к синтезу полиорганосилоксановых блоксополимеров (SiБC), используемых далее в качестве полупродуктов для последующей их сшивки полиизоциануратами как результата взаимодействия с 2,4-ТДИ. Для этих целей было проведено полиприсоединение октаметилциклотетрасилоксана (Д4) к макроцепи Л4230, инициируемое терминальными калий-алкоголятными группами (рис. 14). Использование Л4230 было, кроме того, обусловлено установленной способностью ПЭО и ППО блоков к сегрегации и выстраиванию необычных надмолекулярных структурных формирований.

Далее синтезированный блок-сополимер был подвергнут взаимодействию с 2,4-ТДИ, в результате которого были получены надмолекулярные архитектуры, построенные по типу «ядро-оболочка», в которой полиизоцианураты оказываются центром макромолекулярного формирования, создающего своеобразное «ядро» (жёсткую внутреннюю структуру) с ответвлениями, состоящими из гибкоцепного SiBC. Структура «ядро-оболочка» приводит к образованию свободного пространства в полимерной матрице (рис. 14). При модификации SiBC с использованием PSiO2C протекает реакция переэтерификации, в итоге которой свободное пространство заполняется полидиметисилоксановыми макроцепями (рис. 15).

В качестве основного метода исследования была использована ИКспектроскопия. Образование сегментов ПДМС в составе SibC, полученных при [Д4]:[Л4230] = 5, 10 и 15, подтверждают и исследования, проведённые с использованием спектроскопии ¹Н ЯМР. Число октаметилтетрасилоксановых звеньев (*n*) в составе SibC и степень превращения (конверсию) Д4 вычисляли

по соотношению интенсивности сигналов протонов -CH $_3$ группы в =Si(CH $_3$) $_2$ фрагменте и сигналов протонов от -CH $_3$ группы, входящей в состав полипропиленоксидных звеньев. Согласно полученным результатам, увеличение мольной доли Д4 относительно Л4230 приводит к возрастанию конверсии Д4.

Рисунок 14 — Схема синтеза SiБC с использованием Л4230 и взаимодействия SiБC с 2,4-ТДИ

Было установлено, что содержание золь-фракции для ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:(0-15):8 и 1:(0-15):15 изменяются от 1 до 3 мас.%, подтверждая полноту протекания реакции согласно предложенной схеме (рис. 14).

Так как характерной чертой полиизоциануратов является их высокая термостабильность (350 °C), для чего полученные ИСБС были исследованы с использованием термогравиметрического анализа. На кривых $T\Gamma A$ начало 5%

потери массы приходится на 230 °C. После потери массы до 20% следующая область термического разложения находится при T=340 °C. При повышении относительного содержания 2,4-толуилендиизоцианата и Д4 при синтезе ИСБС температура термического разложения образцов практически не изменяется.

Рисунок 15 — Переэтерификация с участием PSiO2C и SiБC, полученного на основе Л4230

Для ИСБС были проведены измерения кривых напряжение деформация, согласно которым в случае большого содержания 2,4-ТДИ ([Л4230]:[2,4-ТДИ]=1:10), количество использованного Д4 практически не влияет на ход кривых напряжение – деформация (рис. 16а). То есть полиизоциануратное ядро создает достаточную плотность узлов химической сетки, которая способна нивелировать вклад полидиметилсилоксановой составляющей в физико-механические свойства ИСБС. При уменьшении же 2,4-ТДИ относительно содержания Л4230 ДΟ [Л4230]:[2,4-ТДИ]=1:8, наблюдается двукратное падение прочности ИСБС. Относительное удлинение при разрыве при этом не изменяется (рис. 166). Так как изменение содержания 2,4-ТДИ в этих условиях можно считать не столь значительным, причину следует искать в изменении надмолекулярной организации ИСБС. При мольном соотношении [Л4230]:[2,4-ТДИ]=1:8 происходит наиболее эффективное микрофазовое разделение ПЭО, ППО и ПДМС блоков и соответственно наиболее благоприятные условия для формирования структуры по типу «ядро-оболочка». В этом случае контакт полиизоциануратов в составе ядра становится наиболее затруднительным.

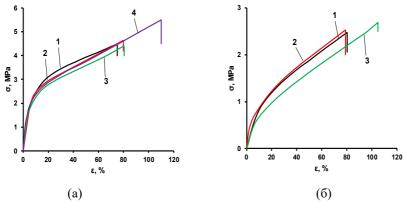


Рисунок 16 — Кривые напряжение—деформация для ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:0:10 (1), 1:5:10 (2), 1:10:10 (3), 1:15:10 (4) (a); [Л4230]:[Д4]:[2,4-ТДИ]=1:0:8 (1), 1:2:8 (2), 1:15:8 (3) (6).

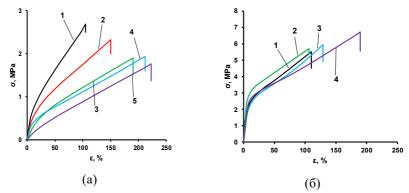


Рисунок 17 — Кривые напряжение — деформация для ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 (а) и [Л4230]:[Д4]:[2,4-ТДИ]=1:15:10 (б) с использованием [PSiO2C] = 0 (1), 0,2 (2), 0,4 (3), 0,7 (4), 1,0 (5) мас.%

Использование PSiO2C в случае ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 ведет к дальнейшему ухудшению прочности при разрыве (рис. 17) в результате того, что полидиметилсилоксановая составляющая проникает в пустоты (не даёт им сформироваться) и ещё больше препятствует контактированию полиизоциануратных структур. Использование же PSiO2C для модификации ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:10, практически не влияет на форму кривых напряжение - деформация, приводя только к небольшому увеличению удлинения при разрыве.

Проведённые исследования позволили определить, что наиболее выраженное построение надмолекулярной структуры по типу «ядрооболочка» происходит для ИСБС, полученных при [Л4230]:[D₄]:[2,4-ТДИ]=1:15:8. Именно надмолекулярная структура ИСБС, полученных при этом мольном соотношении, наиболее подвержена структурирующему воздействию PSiO2C. В связи с этим, для исследования газотранспортных свойств и сорбционной активности были использованы ИСБС, синтезированные при [Л4230]:[D₄]:[2,4-ТДИ]=1:15:8.

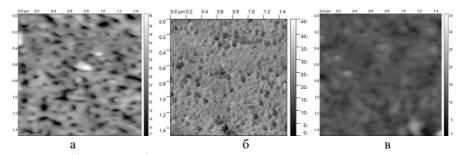


Рисунок 18 — Изображения АСМ для ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 (а) и с использованием [PSiO2C] = 0,2 (б), (в) 1,0 мас.%

Для исследования морфологии поверхности ИСБС была использована атомно-силовая микроскопия. На изображении АСМ для ИСБС, синтезированных при соотношении [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8, можно выделить пустоты на фоне глобулярной морфологии (рис. 18). Для ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 и модифицированных PSiO2C при сохранении глобулярной морфологии поверхности ИСБС наблюдается исчезновение пустот.

4.1 Исследование сорбционной активности ИСБС

Полученные ИСБС были исследованы в качестве сорбентов для ОР. Для установления закономерностей изменения сорбционной активности ИСБС в качестве ОР был использован R6G. Повышение содержания Д4 (соответственно повышение протяжённости ПДМС блока) при синтезе ИСБС ведёт к увеличению эффективности иммобилизации R6G на образцы ИСБС и подтверждает установленные выше закономерности формирования их надмолекулярной структуры.

Способность ИСБС сорбировать ОР явилось предпосылкой их использования в качестве подложки для органических аналитических сенсоров в экспресс-методах определения ионов переходных и редкоземельных металлов в полевых условиях. Химическое взаимодействие, в основном комплексообразующее, может протекать в пустотах ИСБС. Так как

пустоты заполнены гибкой макромолекулярной средой возникает также перспектива концентрирования в них ионов металлов, создавая таким образом возможность значительного повышения чувствительности создаваемого тестметода. Полимерные подложки для иммобилизации сложных органических соединений в настоящее время известны и широко применяются, но не всегда являются пористыми. Однако, даже если полимер является микропористым, может наблюдаться его низкая сорбционная эффективность в отношении ионов металлов и аналитических реагентов из-за особенностей химического строения поверхности пор. Принцип действия аналитических органических способности реагентов основан на их вступать комплексообразования с ионами переходных и редкоземельных металлов. На интенсивность окрашивания в водной среде образующихся комплексных соединений кроме природы аналитов и ОР оказывает влияние также рН среды. В данной работе в качестве аналитического органического реагента использовали AS III, а в качестве аналита водорастворимые соли лантана (LaCl₃). В водном растворе при рН 3,0-3,8 максимальная интенсивность оптического поглощения в водной среде для комплексных соединений La(III) с AS III при длине волны 650 нм.

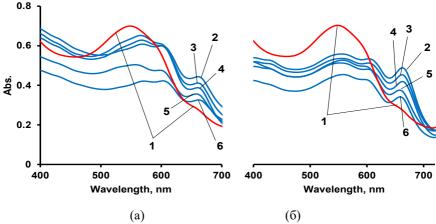


Рисунок 19 — Спектры AS III (1) и комплексов AS III с La(III) при pH=7 (а) и pH=3 (б), сорбированных на ИСБС состава [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8. [LaCl₃] = $1 \cdot 10^{-1}$ (2), $1 \cdot 10^{-2}$ (3), $1 \cdot 10^{-3}$ (4), $1 \cdot 10^{-4}$ (5), $1 \cdot 10^{-5}$ (6) г/дм³

В качестве полимерной подложки для иммобилизации AS III и последующего определения ионов La(III) использовали ИСБС, полученные при [Л4230]:[2,4-ТДИ]=1:8 и [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 (рис. 19). Использовались также ИСБС, полученные при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 и модифицированные 0,2 мас.% PSiO2C (рис. 20).

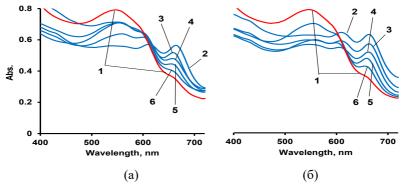


Рисунок 20 — Спектры AS III (1) и комплекса AS III с La(III) при pH=7 (a) и pH=3 (б), сорбированных на ИСБС, полученных при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 с использованием 0,2 мас.% PSiO2C. [LaCl₃] = $1\cdot10^{-1}$ (2), $1\cdot10^{-2}$ (3), $1\cdot10^{-3}$ (4), $1\cdot10^{-4}$ (5), $1\cdot10^{-5}$ (6) г/дм³

Для получения полимерной подложки иммобилизацию AS III на ИСБС проводили из его раствора в этиловом спирте. Последующую аналитическую реакцию с применением ИСБС в качестве подложки проводили в водном растворе La(III). Согласно анализу спектров поглощения и градуировочных графиков (рис. 19-21), комплексообразование AS III с La(III) протекает эффективнее при pH=3.

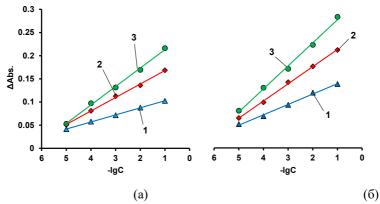


Рисунок 21 — Градуировочные зависимости значений сорбции на ИСБС комплексов AS III с La(III), измеренных при pH=7 (a) и pH=3 (б) (λ =650 нм). ИСБС получены при [Л4230]]:[2,4-ТДИ]=1:8 (1), [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 (2), [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8 с использованием 0,2 мас.% PSiO2C (3)

Оказалось, что ИСБС состава [Л4230]:[Д4]:[2,4-ТДИ]=1:15:8, полученный в присутствии [PSiO2C]=0,2 мас.% проявляет наиболее высокую

эффективность при определении ионов лантана в сравнении с другими исследуемыми образцами. Полимер. полученный на основе [Л4230]:[2,4-ТДИ]=1:8, то есть без Д4, проявляет значительно меньшую эффективность в сравнении с ИСБС. Для возможности количественного определения ионов металлов важное значение приобретает тот факт, что градуировочные зависимости проявляют линейный характер использованного диапазона концентраций ионов La(III).

4.2 Газотранспортные свойства ИСБС, полученных на основе Л4230, D4 и 2,4-ТДИ

Один из методов как тестирования, так и определения практически значимых областей применения получаемых полимеров заключается в исследовании особенностей массопереноса при транспорте газовых потоков. В ряду ИСБС, рассматриваемых в данном разделе для установления газотранспортных характеристик были выбраны ИСБС, синтезированные при [Л4230]:[Д4]:[2,4-ТДИ]=1:15:10. Полученные при таком соотношении реагентов ИСБС характеризуются относительно высокими прочностными показателями и большой протяжённостью ПДМС ответвлений. Полученные в таком составе ИСБС были, кроме того, подвергнуты структурированию с использованием PSiO2C, которое явилось причиной заполнения пустот макроцепями ПДМС. В результате становится возможным достижение газотранспортных свойств, присущих полидиметилсилоксанам в сочетании с высокой селективностью, обусловленной надмолекулярной организацией ИСБС.

таблицах 5-8 приведены такие важные параметры, коэффициенты проницаемости, диффузии и сорбции (растворимости) для мембранных материалов, полученных на основе ИСБС. Для исследуемых газов их кинетические диаметры расположены следующим образом: CO₂ < N₂ < CH₄. Соответственно увеличению значения диаметров этих молекул, понижаются значения коэффициента их диффузии (D) через используемые мембраны. Коэффициенты сорбции (S) для исследуемых полимеров не связаны с кинетическими диаметрами молекул исследуемых газов. Так, для углекислого газа значения S в два раза превышают значения S, полученные для метана, и практически в три раза выше в сравнении с азотом. Более высокие значения S для CO₂ обусловлены его сродством к изучаемым полимерам. Транспортные характеристики для исследуемых в данном разделе газов, где в качестве мембранного материала был использован ОБС, полученный с использованием Л4230, изучены выше и газотранспортные характеристики для этих ОБС приведены в таблицах 1-3. Для ОБС была установлена микропористая надмолекулярная структура ячеистого типа. При использовании Л4230 для синтеза ОБС внутренняя поверхность микропор в этом случае состоит из блоков полиизоцианатов ацетальной природы (ПИО

блоки), которые имеют минимальное сродство к проникающим в создаваемую ими полость молекулярных объектов.

При синтезе ИСБС раскрытие -NCO групп, инициируемое терминальными калий-алкоголятными группами SiБC происходит по связи N=C. В результате образующиеся полиизоцианураты формируют ядро надмолекулярной структуры типа ядро-оболочка, а внешний периметр оболочки состоит из полидиметилсилоксановых макроцепей. В свою очередь приводит воздействие структурирующее PSiO2C к разветвлению полидиметилсилоксановых сегментов и заполнению ими пустот. В результате ОБС, полученные с использованием Л4230, проявляют меньшие значения проницаемости по СО2 в сравнении с ИСБС, надмолекулярная структура которых построена по типу «ядро-оболочка». Причём увеличение протяжённости полидиметилсилоксановых сегментов путём увеличения мольной доли Д4 при синтезе ИСБС ведет к последовательному росту коэффициента проницаемости углекислого газа.

Таблица 5 – Коэффициенты проницаемости (Р) для полимерных мембран

Условия синтеза полимерных мембран	Р, Баррер		
	CO_2	N_2	CH ₄
[Л4230]:[2,4-ТДИ] = 1:10	167,4	8,8	16,6
[Л4230]:[Д4]:[2,4-ТДИ] = 1:15:10	221,5	9,0	28,5
[Л4230]:[Д4]:[2,4-ТДИ] = 1:15:10 c [PSiO2] = 0,2 мас. %	251,4	8,8	30,7

Таблица 6 – Идеальная селективность для систем СО2/газ

Условия синтеза полимерных мембран	Газовая система	
	CO ₂ /CH ₄	CO_2/N_2
[Л4230]:[2,4-ТДИ] = 1:10	10,1	19,0
$[Л4230]:[D_4]:[2,4-ТДИ] = 1:15:10$	7,8	14,6
[Л4230]:[D ₄]:[2,4-ТДИ]=1:15:10 с [PSiO2C] =	8.2	28,6
0,2 мас. %	0,2	20,0

Было проведено сравнение газотранспортных характеристик по углекислому газу мембранных материалов, полученных с использование ИСБС и известных из литературы полимерных мембран, наиболее близких к ним по химическому строению. Результаты исследования газотранспортных свойств полиуретановых мембранных материалов присутствуют литературных источниках. Так. исследованы сегментированные полиэтиленоксидные блок-сополимеры в качестве газоразделительных мембран (Nebipasagil, etc. Polymer. 2017. 118. P. 256). Установленные авторами этих работ коэффициенты проницаемости для углекислого газа достигают 197 Баррер, а для метана составляют 32 Баррер. В другой работе (H. Li, etc. J. Membr. Sci. 2011. 369. Р. 49) также установлены коэффициенты

проницаемости для углекислого газа и метана, которые имеют значения 130 Баррер для CO₂ и 15 Баррер для CH₄. Для полиуретанов на основе 2,4-ТДИ, полидиметилсилоксана и политетраметиленгликоля с полиамидом, описанных в работе (М. Yoshino, etc. J. Polym. Sci. Part B: Polym. Phys. 2000. 38. P. 1707), наиболее высокий коэффициент проницаемости составляет 134 Баррер по CO₂ и 8.5 Баррер по CH₄. В исследовании (S. Park, etc. J. Membr. Sci. 2016. 516. P.202) с использованием лестничных силсесквиоксанов получены органонеорганические полимерные мембраны. В этом случае коэффициенты проницаемости составляют 48 Баррер для CO₂ и 36 Баррер для CH₄. В работе (W.R. Kang. J. Membr. Sci. 2015. 475. P.384) исследованы аналогичные органонеорганические полимеры, значения проницаемости находятся в пределах 100 Баррер для CO₂ и 9 Баррер для CH₄.

Таблица 7 – Коэффициенты диффузии (D) для полимерных мембран

Условия синтеза полимерных мембран	$D \times 10^{10}, \text{m}^2 \cdot \text{c}^{-1}$		
	CO_2	N_2	CH ₄
[Л4230]:[2,4-ТДИ] = 1:10	4,00	2,63	1,01
[Л4230]:[Д4]:[2,4-ТДИ] = 1:15:10	4,10	2,70	1,20
$[\Pi 4230]$: $[\Pi 4]$: $[2,4$ -Т $\Pi M]$ = 1:15:10 [PSiO2C] = 0,2 мас. %	4,40	2,64	1,28

Таблица 8 – Коэффициенты сорбции (S) для полимерных мембран

Условия синтеза полимерных мембран	$S \times 10^5$, моль·м ⁻³ Па ⁻¹		
	CO_2	N_2	CH ₄
[Л4230]:[2,4-ТДИ] = 1:10	14,01	1,12	5,50
[Л4230]:[Д4]:[2,4-ТДИ] = 1:15:10	18,09	1,12	7,95
[Л4230]:[Д4]:[2,4-ТДИ] = 1:15:10 [PSiO2C] = 0,2 мас. %	19,13	1,12	8,03

Таким образом, полученные ИСБС перспективны для использования в качестве высокоселективного и производительного слоя для мембранных материалов при разделении таких пар газов как $\mathrm{CO_2/CH_4}$ и $\mathrm{CO_2/N_2}$.

5. Использование PSiO2C в синтезе полидиметилсилоксанов

При синтезе полидиметилсилоксанов скорость полимеризации октаметилциклотетрасилоксана определялась визуально по нарастанию вязкости реакционной системы (рис. 22). Результаты исследований позволяют заключить, что PSiO2C, PSiO2, SiOS-10 и SiOS-50 ускоряют полимеризацию Д4 в значительной степени. Для многократного понижения времени начала нарастания вязкости достаточно использовать всего 0,1 мас.% модификаторов. Было также проведено исследование, в котором в качестве сокатализатора был использован ПЭО в чистом виде. В этом случае время начала повышения вязкости ПДМС составило 10 минут.

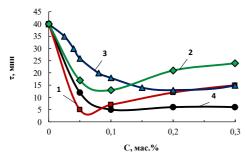


Рисунок 22 - Зависимости начала нарастания вязкости (т, мин.) в процессе полимеризации Д4 от количества использованного для модификации PSiO2C (1), PSiO2 (2), SiOS-10 (3) и SiOS-50 (4)

Предложен механизм, согласно которому ПЭО составляющие, сворачиваясь в конформацию краун-эфиров, захватывают ионы К+, усиливая разделение в пространстве силоксанолят-анионов и ионов калия, разрушая их ассоциаты и повышая в итоге скорость полимеризации Д4. Показано, что получаемых PSiO2C, оставаясь В составе c их использованием полидиметилсилоксанов, оказываются причиной значительного повышения когезионных взаимодействий в ПДМС. Применение чистого ПЭО не приводит к повышению когезионных взаимодействий для ПДМС. Использование модифицированных ПДМС позволяет оказывать эффективное воздействие на физико-механические свойства герметизирующих композиций на их основе.

6. Ароматические полиуретаны каркасной структуры на основе Л4230, МДИ и БФА

На основе анионного макроинициатора Л4230, 4,4'-дигидрокси-2,2дифенилпропана (бисфенол-А, БФА) и бис(4-изоцианатофенил)метана (МДИ) получены ароматические полиуретаны (АПУ-МДИ). Было установлено, что гидроксильные группы 4,4'-дигидрокси-2,2-дифенилолпропана полностью В реакции уретанообразования. Изменение соотношения изоцианатных и гидроксильных групп позволяет получать сегментированные полиуретаны с длинной цепью жесткого ароматического блока. Симметричность жесткого блока, предопределенная химическим строением МДИ и БФА, и высокая доля уретановых групп в составе этого сегмента, задаваемая мольным соотношением исходных реагентов, создает эффективных межмакромолекулярных благоприятные условия для взаимодействий в АПУ-МДИ, основными участниками которых являются уретановые связи (рис. 23). В результате большие энергии когезионных взаимодействий создают условия для одноосного сдвига жестких блоков относительно друг друга при приложенном напряжении растяжения и возникновению значительной пластической деформации.

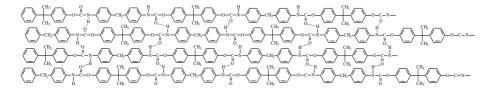
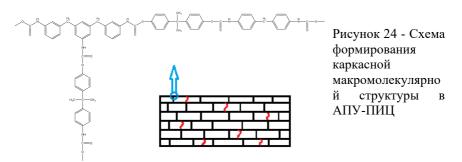



Рисунок 23 - Межмолекулярные взаимодействия в АПУ-МДИ

Катализируемое калий-алкоголятными группами макроинициатора взаимодействие БФА и полиизоцианата (ПИЦ), представляющего собой смесь МДИ и его полифункциональных производных, позволила получить ароматические полиуретаны каркасной структуры (АПУ-ПИЦ) (рис. 24).

Увеличение доли МДИ и ПИЦ в АПУ приводит к повышению их стабильности в углеводородных средах. В АПУ-ПИЦ, полученных на основе как Л4230, так и Л6030, не происходит микрофазного разделения гибких и жестких сегментов. АПУ-ПИЦ проявляют высокую механическую прочность, теплостойкость и меньшие значения удельной плотности в сравнении с АПУ-МДИ.

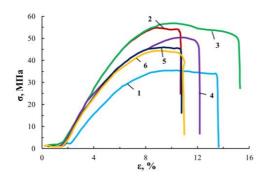


Рисунок 25 - Кривые напряжение — деформация для АПУ-ПИЦ, полученных на основе [Л4230]:[ПИЦ]: [БФА]=1:18:14 при содержании МК: 0 (1), 2 (2), 4 (3), 7 (4), 11 (5), 18 (6), мас.%

На основе безводного хлорида железа (III) и полиэтиленоксида с MM=1500 $(\Pi \ni O-35)$ получена И исследована модифицирующая металлокомплексная система (MK). Модификация ароматических полиуретанов каркасной структуры осуществлялась в диапазоне содержания МК от 0,5 до 20%. При содержании 4-7 мас. % МК полимер проявляет высокую воздействию углеводородов, высокие характеристики (рис. 25) и термостабильность (рис. 26). Установлено, что внутренняя полость ароматического каркаса заполняется как гибкоцепной составляющей, так и металлокомплексной системой, приводя к созданию дополнительных межмолекулярных взаимодействий.

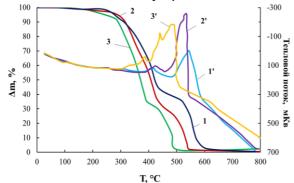


Рисунок 26 - Кривые ТГА (1-3) и ДТА (1'-3') для АПУ на основе [Л4230]:[ПИЦ]:[БФА] = 1:18:14, при содержании МК: 0 (1, 1'), 4 (2, 2'), 20 (3, 3'), мас.% в токе кислорода

Известной проблемой использования БФА для синтеза полиуретанов является их низкая термостабильность. В связи с этим исследователи избегают использования БФА для создания жестких блочных структур в полиуретанах. Согласно рисунку 26 начало максимального тепловыделения при термическом разложении в токе кислорода приходится на $500\,^{\circ}$ С, а его максимум на $550\,^{\circ}$ С. Наблюдаемый характер термоокислительной деструкции можно объяснить тем, что ароматический каркас берет на себя основную тепловую нагрузку, замедляя таким образом термоокислительное разрушение гибкоцепной составляющей.

Образцы, полученные с использованием МК в области относительно небольшого его содержания, не ухудшают термическую стабильность АПУ-ПИЦ. Увеличение же содержания МК до 20% приводит к ожидаемому понижению термической стабильности. Однако такое понижение не является критичным с точки зрения возможности эксплуатации такого полимерного материала.

Заметные изменения наблюдаются на кривых ТМА и ДМА (рис. 27). Наибольшие изменения в термомеханическом поведении АПУ наблюдаются уже при содержании МК=1,2%. В зависимости от содержания МК температура начала термодеструктивного течения АПУ-ПИЦ располагается в области 170-200 °C.

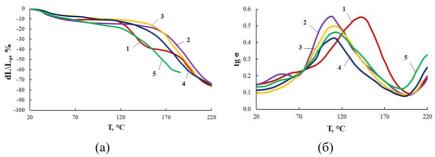


Рисунок 27 — Кривые ТМА (а) и ДМА (б) для АПУ-ПИЦ, полученных на основе [Л4230]:[ПИЦ]:[БФА]=1:18:14 при содержании МК: 0 (1), 1,2 (2), 2,5 (3), 7 (4), 15 (5), мас.%

Каркасная структура ароматических полиуретанов и распределение гибкоцепной составляющей и металлокомплекса в полостях каркаса препятствуют эффективному контакту координационно связанных ионов железа, находящихся в разных степенях окисления. Это приводит к тому, что понижение удельного объемного электрического сопротивления (ρ_{ν}) до $7\cdot10^8$ Ом·м, обусловленное обменом электронов между ионами железа, находящимися в двух степенях окисления, наблюдается при содержании МК=20%.

ЗАКЛЮЧЕНИЕ

Основные научные и практические результаты работы заключаются в следующем:

- 1. Впервые установлено, что формированию ОБС, содержащих преимущественно полиизоцианатные структуры ацетальной природы, способствуют использование различающегося активностью изоцианатных групп 2,4-ТДИ, терминированных гидроксильными и калий-алкоголятными группами блок-сополимеров оксидов этилена и пропилена, их молекулярная масса, применение сокатализаторов и соблюдение относительно низкой температуры реакционной среды.
- 2. Установлены газотранспортные характеристики мембран, полученных на базе ОБС. Для всех изучаемых газов коэффициент диффузии повышается по мере роста содержания ПЭО в составе Л4200. Достигнуты высокие значения коэффициентов газопроницаемости для молекул полярной природы, таких как аммиак и сероводород, и высокие значения идеальной селективности для пар газов, включающих полярные и неполярные газы, такие как гелий, азот, кислород, углекислый газ и метан.
- 3. На основе Л4230, 2,4-ТДИ и Gl-POSS синтезированы новые органонеорганические полимеры с каркасной надмолекулярной структурой. С использованием малоуглового рентгеновского рассеяния подтверждена доменная упорядоченная структура ОБС и наличие в их структуре пустот.

Установлена высокая проницаемость для молекул аммиака и высокая селективность для пар газов NH_3/N_2 и NH_3/H_2 , которая зависит от содержания Gl-POSS.

- 4. Разработан новый способ синтеза устойчивых к самоконденсации органозамещённых кремнезёмных каркасов PSiO2, PSiO2C, SiO2S, установлены реакционные условия их получения и особенности строения. Установлено, что модификация ОБС с использованием PSiO2C и SiO2S приводит к значительному воздействию на надмолекулярную организацию, физико-механические характеристики и приводит к повышению коэффициентов диффузии CO_2 , N_2 и CH_4 .
- 5. С использованием 2,4-ТДИ и синтезированных на основе Д4 и Л4230 амфифильных блок-сополимеров SiБC, впервые получены сшиваемые изоциануратами блок-сополимеры. Установлено, что надмолекулярная структура ИСБС формируется по типу «ядро-оболочка», в которой полиизоцианураты создают жёсткую внутреннюю структуру с ответвлениями, состоящими из гибкоцепного SiБC.
- 6. Показано, что в результате заполнения полидиметисилоксановой составляющей свободного пространства в полимерной матрице ИСБС, осуществляемого путём его структурирования PSiO2C, происходит повышение проницаемости и идеальной селективности пар газов CO_2/CH_4 и CO_2/N_2 .
- 7. Установлено, что эффективность сорбции функциональных органических реагентов на ИСБС возрастает по мере повышения протяжённости ПДМС составляющей и понижения доли полиизоциануратов в структуре ИСБС, а высокая эффективность определения ионов La(III) иммобилизованным на полимер аналитическим реагентом AS III обусловлена концентрированием ионов металла в пустотах ИСБС.
- 8. Установлено, что PSiO2C проявляют свойства промоутеров анионной полимеризации Д4 благодаря способными к сворачиванию в конформацию краун-эфиров и захвату ионов K^+ полиэтиленоксидным ответвлениям. Показано, что PSiO2C, оставаясь в составе получаемых с их использованием ПДМС, оказываются причиной значительного повышения когезионных взаимодействий и физико-механических свойств герметизирующих композиций на их основе.
- 9. Путем каталитического воздействия макроинициатора Л4230 на 4,4'-дигидрокси-2,2-дифенилпропана реакцию 4,4'-дифенилметандиизоцианатом полифункциональными И его производными впервые получены ароматические полиуретаны с каркасной макромолекулярной структурой, проведена их металлокомплексная модификация. Установлено, что внутренняя полость ароматического каркаса заполняется как гибкоцепной составляющей, так и металлокомплексной системой, приводя К созданию дополнительных межмолекулярных взаимолействий.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Публикации в рецензируемых изданиях, рекомендованных ВАК РФ для размещения материалов диссертации

- 1. Давлетбаева И.М. Исследование надмолекулярной организации металлкоординированных полиуретанов / И.М. Давлетбаева, Р.С. Давлетбаев, О.Р. Гумерова, **И.И. Зарипов**, В.В. Парфенов// Бутлеровские сообщения. 2013. Т. 34, № 5. С. 85-90.
- 2. Davletbaeva I.M. Polyurethanes Based on Anionic Macroinitiators, Aromatic Isocyanates, and 4,4'-Dihydroxy-2,2-diphenylpropane / I.M. Davletbaeva, I.I. Zaripov, R.S. Davletbaev, F.B. Balabanova // Russian Journal of Applied 2014. Vol. 87, No 4. P. 468-473. Chemistry. DOI: 10.1134/S10704272140400120. (Q3) [Давлетбаева И.М. Полиуретаны на основе макроинициаторов анионной природы, ароматических изоцианатов и 4,4'-дигидрокси-2,2-дифенилпропана/ И.М. Давлетбаева, И.И. Зарипов, Р.С. Давлетбаев, Ф.Б. Балабанова // Журнал прикладной химии. – 2014. – Т.87. № 4. C. 475-481.]
- 3. Davletbaeva I.M., Optically Transparent Mesoporous Polymers Based on Anionic Macroinitiators and 2,4-Toluylene Diisocyanate / I.M. Davletbaeva, A.I. Akhmetshina, R.S. Davletbaev, I.I. Zaripov, A.M. Gumerov, R.R. Sharifullin // Polymer Science. Series B. 2014. Vol. 56, № 6. Р. 781-788. DOI: 10.1134/S1560090414060037. (Q3) [Давлетбаева И.М. Оптически прозрачные мезопористые полимеры на основе макроинициаторов анионной природы и 2,4-толуилендиизоцианата / И.М. Давлетбаева, А.И. Ахметшина, Р.С. Давлетбаев, И.И. Зарипов, А.М. Гумеров, Р.Р. Шарифуллин // Высокомолекулярные соединения. Серия Б 2014. Т. 56. №6. С. 543–551.]
- 4. Давлетбаева И.М. Исследование кинетических закономерностей полиприсоединения ароматических изоцианатов к макроинициаторам анионной природы/ И.М. Давлетбаева, **И.И. Зарипов**, Г.Р. Нургалиева, Р.С. Давлетбаев, Р.Р. Шарифуллин // Вестник Казанского технологического университета. 2014. Т. 17, № 15. С. 26-28.
- 5. Зарипов И.И. Синтез полимеров на основе макроинициаторов, 2,4-толуилендиизоцианата и октаглицидил полиэрального олигомерного силсесквиоксана / И.И. Зарипов, И.М. Давлетбаева, А.М. Гумеров, И.И. Гатауллин, Р.Р. Шарифуллин // Вестник Казанского технологического университета. 2015. T. 18, N 15. C. 18-21.
- 6. **Зарипов И.И.** Исследование надмолекулярной структуры полимеров на основе макроинициаторов, 2,4-толуилендиизоцианата и октаглицидил полиэдрального олигомерного силсесквиоксана / **И.И. Зарипов**, И.М. Давлетбаева, Р.Я. Дебердеев, Г.Р. Нургалиева, В.В. Парфенов // Вестник Казанского технологического университета. -2015. -T. 18, № 15. -C. 23-25.
- 7. **Зарипов И.И.** Физико-механические характеристики полимеров на основе макроинициаторов, 2,4-толуилендиизоцианата и октаглицидил полиэдрального олигомерного силсесквиоксана / **И.И. Зарипов**, И.М.

- Давлетбаева, А.М. Гумеров, А.И. Мазильников, К.В. Силахина // Вестник Казанского технологического университета. 2015. Т. 18, № 15. С. 31-33.
- 8. **Зарипов И.И.** Исследование реакции 4,4'-дифенилметандиизоцианата с 4,4'-дигидрокси-2,2-дифенилпропаном, катализируемой макроинициатором анионной природы / **И.И. Зарипов**, Р.Р. Каримуллин, И.М. Давлетбаева, А.М. Гумеров // Вестник технологического университета. -2016. T. 19, № 11. C. 8-10.
- 9. Sazanova T.S. An Atomic Force Microscopy Study of Hybrid Polymeric Membranes: Surface Topographical Analysis and Estimation of Pore Size Distribution / T.S. Sazanova, I.V. Vorotyntsev, V.B. Kulikov, I.M. Davletbaeva, I.I. Zaripov // Petroleum Chemistry. 2016. Vol. 56, № 5. P. 427-435. DOI: 10.1134/S096554411605011X. (Q3) [Сазанова Т.С. Изучение гибридных полимерных мембран с помощью атомно-силовой микроскопии: топографический анализ поверхности и оценка распределения размеров пор / Т.С. Сазанова, И.В. Воротынцев, В.Б. Куликов, И.М. Давлетбаева, И.И. Зарипов // Мембраны и мембранные технологии. 2016. Т. 6. №2. С. 166-175.]
- 10. Davletbaeva I.M. Framed Aromatic Polyurethanes Based on an Anionic Macroinitiator, 4,4'-Diphenylmethane Diisocyanate, and 4,4'-Dihydroxy-2,2-Diphenylpropane: Synthesis and Characterization / I.M. Davletbaeva, **I.I. Zaripov**, R.R. Karimullin, A.M. Gumerov, R.S. Davletbaev, R.R. Sharifullin, V.V. Parfenov // Polymer Science. Series B. − 2017. − Vol. 59, № 1. − P. 43-50. − DOI: 10.1134/S1560090417010043. **(Q3)** [Давлетбаева И.М. Ароматические полиуретаны каркасной структуры на основе анионного макроинициатора, 4,4'-дифенилметандиизоцианата и 4,4'-дигидрокси-2,2-дифенилпропана. Синтез и исследование / И. М. Давлетбаева, И. И. Зарипов, Р. Р. Каримуллин, А. М. Гумеров, Р. С. Давлетбаев, Р. Р. Шарифуллин, В. В. Парфенов // Высокомолекулярные соединения. Серия Б. − 2017. − том 59. № 1. − C. 28–36.1
- 11. Davletbaeva I.M., Framed Aromatic Polyurethanes Based on an Anionic 4,4'-Diphenylmethane Diisocyanate, Macroinitiator, 4,4'-Dihydroxy-2,2-Diphenylpropane: Metal-Complex Modification Davletbaeva, I.I. Zaripov, R.R. Karimullina, A.M. Gumerov, R.S. Davletbaev, G.V. Burmakina // Polymer Science. Series B. - 2017. - Vol. 59, № 1. - P. 69-79. -DOI: 10.1134/S1560090417010055. (Q3) [Давлетбаева И.М. Ароматические полиуретаны каркасной структуры на основе анионного макроинициатора, 4,4'-дифенилметандиизоцианата и 4,4'-дигидрокси-2,2- дифенилпропана. Металлокомплексная модификация / И. М. Давлетбаева, И. И. Зарипов, Р. Р. Каримуллин, А. М. Гумеров, Р. С. Давлетбаев, Г. В. Бурмакина // Высокомолекулярные соединения. Серия Б. – 2017. – том 59. № 1. – С. 57–67.]
- 12. Davletbaeva I.M. Synthesis of Block Copolymers Based on a Macroinitiator and 2,4-Toluene Diisocyanate / I.M. Davletbaeva, A.I. Mazil'nikov, **I.I. Zaripov**, R.S. Davletbaev, A.M. Gumerov, V.V. Parfenov // Polymer Science. Series B. − 2018. − Vol. 60, № 1. − P. 51-57. − DOI: 10.1134/S1560090418010025.

- (Q3) [Давлетбаева И.М. Особенности синтеза блок-сополимеров на основе макроинициатора и 2,4-толуилендиизоцианата / И.М. Давлетбаева, А.И. Мазильников, И.И. Зарипов, Р.С. Давлетбаев, А.М. Гумеров, В.В. Парфенов // Высокомолекулярные соединения, Серия Б, 2018, том 60, № 1, С. 34-40.]
- 13. Давлетбаев Р.С. Модификация полиуретанов и полиуретанизоциануратов амфифильными макромолекулярными щетками/ Р.С. Давлетбаев, 3.3. Файзулина, А.Ф. Исхаков, **И.И. Зарипов**, Е.С. Гребенщикова, И.М. Давлетбаева // Вестник технологического университета. -2018. -T. 21, № 9. -C. 54-58.
- 14. Давлетбаев Р.С. Модифицирующее воздействие амфифильных макромолекулярных щеток на надмолекулярную организацию микропористых полимеров на основе макроинициатора и 2,4-толуилендиизоцианата / Р.С. Давлетбаев, З.З. Файзулина, А.Ф. Исхаков, **И.И. Зарипов**, Е.С. Гребенщикова, И.М. Давлетбаева// Бутлеровские сообщения. -2018.-T.55, № 9.-C.115-120.
- 15. **Зарипов И.И.** Мультиблок-сополимеры в качестве подложки для аналитических органических реагентов, используемых в химическом анализе / И.И. Зарипов, И.М. Джаббаров, З.М. Хисматуллин, И.М. Давлетбаева // Вестник технологического университета. -2022. T. 25, № 8. C. 191-197.

Публикации в рецензируемых журналах, индексируемых в Scopus/WoS

- 16. Akhmetshina A.A., The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes / A.A. Akhmetshina, I.M. Davletbaeva, E.S. Grebenschikova, T.S. Sazanova, A.N. Petukhov, A.A. Atlaskin, E.N. Razov, I.I. Zaripov, C.F. Martins, L.A. Neves, I.V. Vorotyntsev // Membranes. 2016. –Vol. 6, № 1. P. 4. DOI: 10.3390/membranes6010004. (Q2)
- 17. Davletbaeva I.M. Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate/ I.M. Davletbaeva, **I.I. Zaripov**, A.I. Mazilnikov, R.S. Davletbaev, R.R. Sharifullin, A.A. Atlaskin, T.S. Sazanova, I.V. Vorotyntsev // Membranes. − 2019. − Vol. 9, № 3. − P.42. − DOI: 10.3390/membranes9030042. **(Q2)**
- 18. Davletbaev R.S., Synthesis and characterization of amphiphilic branched silica derivatives associated with oligomeric medium/ R.S. Davletbaev, **I.I. Zaripov**, Z.Z. Faizulina, I.M. Davletbaeva, D.S. Domrachova, A.M. Gumerov // RSC Advances. 2019. Vol. 9. P. 21233-21242. DOI: 10.1039/C9RA03683K. **(Q1)**
- 19. **Zaripov I.I.** Synthesis and characterization of novel nanoporous Gl-POSS-branched Polymeric gas separation membranes / **I.I. Zaripov**, I.M. Davletbaeva, Z.Z. Faizullina, R.S. Davletbaev, A.T. Gubaidullin, A.A. Atlaskin, I.V. Vorotyntsev // Membranes. 2020. Vol. 10, № 5. P. 110. DOI: 10.3390/membranes10050110. **(Q2)**

- 20. Davletbaeva I.M., Amphiphilic Poly(dimethylsiloxane-ethylenepropylene oxide)-polyisocyanurate Cross-Linked Block Copolymers in a Membrane Gas Separation / I.M. Davletbaeva, I.M. Dzhabbarov, A.M. Gumerov, I.I. Zaripov, R.S. Davletbaev, A.A. Atlaskin, T.S. Sazanova, I.V. Vorotyntsev // Membranes. 2021. Vol. 11, № 2. P. 94. DOI: 10.3390/membranes11020094. (Q2)
- 21. Davletbaeva I.M., Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation / I.M. Davletbaeva, A.Yu. Alentiev, Z.Z. Faizulina, I.I. Zaripov, R.Yu. Nikiforov, V.V. Parfenov, A.V. Arkhipov // Polymers. 2021. Vol. 13, № 20. P. 3579. DOI: 10.3390/polym13203579. (Q1)
- 22. Davletbaeva I.M., Optically transparent polydimethylsiloxane-ethylenoxide-propylene oxide multiblock copolymers crosslinked with isocyanurates as organic compounds sorbents / I.M. Davletbaeva, O.O. Sazonov, I.M. Dzhabbarov, I.I. Zaripov, R.S. Davletbaev, A.V. Mikhailova // Polymers. 2022. Vol. 14, № 13. P. 2678. DOI: 10.3390/polym14132678. (Q1)

Объекты интеллектуальной собственности:

- 23. Пат. 2626358 Российская Федерация, МПК С09D 175/08. Полиуретановая защитная композиция / Давлетбаева И.М., Давлетбаев Р.С., Гумеров А.М., Зарипов И.И., Гребенщикова Е.С., Мазильников А.И.; заявитель и патентообладатель ФГАОУ ВО КФУ. № 2016132640; заявл. 08.08.2016; опубл. 26.07.2017, Бюл. № 21. 8 с.
- 24. Пат. 2685545 Российская Федерация, МПК С08G 77/14, С08G 77/06, С08G 77/16, С08G 77/46. Олигосилоксаны с гидрофильными и гидрофобными ответвлениями в качестве модификатора для силоксановых каучуков и способ их получения / Файзулина 3.3., Давлетбаева И.М., Давлетбаев Р.С., Зарипов И.И., Гумеров А.М.; заявитель и патентообладатель ФГБОУ ВО "КНИТУ". № 2019100359; заявл. 09.01.2019; опубл. 22.04.2019, Бюл. № 12. 10 с.

Статья в материалах конференции:

25. Давлетбаева И.М., Сазонов О.О., **Зарипов И.И.,** Давлетбаев Р.С., Макромолекулярная архитектура в синтезе микро- и мезопористых органических полимеров, Сборник трудов XX Международной конференции по химии и физикохимии олигомеров 2024. – г. Самара. – Том 1. – С.30-49.

Тезисы докладов

По материалам диссертации опубликованы тезисы 59 докладов на научных конференциях и симпозиумах.

Заказ № Тираж 100 экз.