Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО КНИТУ)

УТВЕРЖДАЮ

Зав. кафедрой ТЭП А.Ф. Дресвянников

сентября 2018 г.

Программа вступительного испытания в аспирантуру по направлению 18.06.01 – Химические технологии

Направленность - «Технология электрохимических процессов и защита от коррозии»

1. Вопросы программы вступительного испытания в аспирантуру

- 1. Понятия: электрохимическая система, электрод, электролит, внешняя и внутренняя цепи, типы электрохимических систем их особенности и области использования.
- 2. Законы Фарадея. Число Фарадея и его физический смысл.
- 3. Потенциалы разряда ионов, потенциалы окисления и восстановления ионов и молекул. Причины кажущихся отклонений от законов Фарадея. Первичные, вторичные и побочные реакции.
- 4. Выход по току. Методы определения выхода по току. Особенности определения выхода по току при импульсном электролизе.
- Уравнение электродного потенциала (уравнение Нернста). Международные правила о знаке электродного потенциала. Водородная шкала электродных потенциалов. Стандартные электродные потенциалы.
- 6. Электрохимический потенциал и свободная энергия Гиббса.
- 7. Связь равновесной ЭДС электрохимической цепи с максимальной работой и изменением энергии Гиббса.
- 8. Водородная шкала электродных потенциалов.
- 9. Равновесные и стационарные электродные потенциалы.
- 10. Классификация электродов (условная запись, потенциалопределяющая реакция и уравнение электродного потенциала). Электроды первого, второго, третьего рода.
- 11. Неравновесные электрохимические системы. Электрохимические ячейки. Основные и побочные продукты электролиза. Понятия: «парциальный ток» и «выход по току»
- 12. Скорость электрохимической реакции (ЭХР) и ее аналитическое выражение. Электрохимические эквиваленты. Сила и плотность тока как характеристика скорости ЭХР. Истинная плотность тока.
- 13. Стадийность катодной электрохимической реакции (на примере восстановления комплекса металла). Стадийность анодных реакций на растворимых и не растворимых электродах. Понятие: «лимитирующая стадия ЭХР».
- 14. Поляризация и составляющие электродной поляризации. Перенапряжение электрохимической реакции и его слагаемые.
- 15. Методы изучения электродной поляризации и электрохимического перенапряжения.

- 16. Уравнение скорости электрохимической реакции при лимитирующей стадии переноса заряда (уравнение поляризационной кривой).
- 17. Уравнение Тафеля и его использование для определения кинетических параметров электрохимической реакции.
- 18. Кинетика совмещенных, сопутствующих реакций. Принципы независимости и суперпозиции поляризационных кривых.
- 19. Деполяризация и сверхполяризация в сопряженных реакциях электрохимического сплавообразования металлов.
 - 20. Классификация электрохимических процессов с точки зрения электрохимической термодинамики. Дайте определение понятиям: электролизёр, гальванический элемент. Классификация электролизёров по назначению.
- 21. Классификация электролизёров по способу включения электродов в электрическую цепь: монополярные и биполярные. Примеры использования. Расчёт тока и напряжения.
- 22. Конструкции используемых в электролизёрах электродов: сплошные, не сплошные, насыпные, жидкие, подвижные, комбинированные.
- 23. Диафрагменные и бездиафрагменные электролизёры. Типы диафрагм, назначение. Примеры практического использования: схемы электролизёров для получения водорода и кислорода, хлора и щёлочи, электролизёры с ионообменной диафрагмой.
- 24. Мембранный электролиз. Типы мембран, назначение.
- 25. Материальный баланс электролизёров: с проточным и непроточным электролитом.
- 26. Баланс напряжений электролизёра: основное уравнение, диаграмма распределения падения напряжений в электролизёре. Графическое определение электрохимических и электрических составляющих баланса: реактора и гальванической ванны. Расчёт падения напряжения в электролите с плоскими, коаксиальными, подвижными (барабан) электродами.
- 27. Энергетический баланс электролизёра.
- 28. Выбор источника питания гальванической ванны. Удельный расход электрической энергии (реактор, гальваническая ванна)
- 29. Распределение тока и металла при электроосаждении покрытий на подвесках. Критерии используемые для количественной оценки распределения тока и металла.
- 30. Распределение тока и металла при электроосаждении покрытий насыпью (барабан, колокол). Статистические методы используемые для регулирования процессов электроосаждения насыпью. Контрольные карты Шухарта и Пейджа.

- 31. Физико-химические особенности процесса электроосаждения насыпью. Модель процесса по Крейгу и Харру.
- 32. Выбор составов технологических растворов, нормы расхода химикатов и анодного материала в технологических процессах нанесения покрытий.
- 33. Общие сведения о твёрдости покрытий. Приборы и методы (Бринелля, Роквелла, Виккерса, Мооса) измерения твёрдости гальванических металлических покрытий, Количественные показатели твёрдости.
- 34. Химическая генерация электрической энергии. Основные типы химических источников тока.
- 35. Классификации коррозионных процессов.
- 36. Методы оценки коррозионной стойкости металлов.
- 37. Термодинамика электрохимической коррозии.
- 38. Применение диаграмм равновесий потенциал рН для анализа процессов коррозии.
- 39. Кинетика электрохимической коррозии.
- 40. Электрохимическая коррозия, как частный случай протекания сопряженных реакций ионизации атомов металла и восстановления окислителя.
- 41. Сопряженные реакции при наложении внешней поляризации.
- 42. Поляризационное сопротивление.
- 43. Коррозия в условиях локализации катодных и анодных реакций.
- 44. Коррозия при восстановлении кислорода и ионов гидроксония.
- 45. Стадийность ионизации металла.
- 46. Участие компонентов раствора в элементарных стадиях анодной реакции.
- 47. Растворение металла по химическому механизму.
- 48. Пассивное состояние металлов.
- 49. Коррозия сплавов. Способы перевода металла в пассивное состояние. Случаи нарушения пассивного состояния (перепассивация, питтингообразование).
- 50. Коррозия сплавов. Парциальные скорости растворения компонентов сплава.
- 51. Атмосферная, подземная, морская и биологическая коррозия.
- 52. Атмосферная коррозия. Механизм, контролирующие факторы. Влияние загрязнений атмосферы, влажности, температуры на скорость атмосферной коррозии.
- 53. Подземная, морская, биологическая коррозия. Условия возникновения, механизм, особенности протекания.
- 54. Питтинговая, язвенная, межкристаллитная коррозия. Особенности протекания. Влияние различных факторов на скорость локальных видов коррозии.

- 55. Коррозия металлов в контакте.
- 56. Коррозионное растрескивание. Стадии роста трещины. Критическое напряжение.
- 57. Коррозионная усталость. Предел коррозионной усталости.
- 58. Термодинамика и кинетика газовой коррозии.
- 59. Требования, предъявляемые к защитным пленкам. Механизм окисления и законы роста оксидных пленок. Правило Пиллинга-Бедвортса.
- 60. Влияние различных факторов на скорость газовой коррозии.
- 61. Коррозионная стойкость железа и сплавов на его основе.
- 62. Коррозионные свойства железа. Роль углерода в коррозионно-электрохимическом поведении сплавов железа с углеродом. Принципы легирования для повышения кислотостойкости, стойкости против питтинговой и межкристаллитной коррозии.
- 63. Жаростойкие и жаропрочные стали. Электрохимическая характеристика и коррозионная стойкость важнейших цветных металлов и сплавов на их основе (медь, никель, алюминий, магний, титан).
- 64. Гальванические покрытия. Классификация и механизм защитного действия.
- 65. Коррозионная стойкость и защитная способность гальванических покрытий.
- 66. Классификация покрытий. Механизм защитного действия однослойных и многослойных гальванических покрытий.
- 67. Классификация и обоснование выбора методов защиты. Предупреждение коррозии на стадии проектирования.
- 68. Противокоррозионные легирование и рафинирование. Термическая обработка металла.
- 69. Защитные покрытия: металлические, неметаллические неорганические и органические. Обработка агрессивной среды.
- 70. Ингибиторы коррозии.
- 71. Консервация металлических изделий.
- 72. Электрохимические методы защиты. Принципы катодной и анодной защиты.
- 73. Катодная и анодная защита с помощью поляризации от внешнего источника постоянного тока, защита с помощью протектора. Станции катодной и анодной защиты.
- 74. Классификация, цели, характеристика методов исследования коррозионно-электрохимических процессов.
- 75. Электрохимические методы коррозии (метод поляризационных кривых и поляризационного сопротивления, измерения электродного потенциала металла), гравиметрический, аналитические методы (химический, фотоколориметрический), волюмо-

- метрический, радиометрический; методы исследования состава и состояния поверхности. Возможности, достоинства, недостатки каждого метода.
- 76. Методы исследования коррозионной стойкости и защитной способности гальванических покрытий.
- 77. Стандартизация в области коррозии и защиты от нее. Стандарты ЕСЗКС.
- 78. Методы контроля коррозионного состояния машин и аппаратов. Коррозионный мониторинг.
- 79. Основные подходы к выбору коррозионностойких металлических материалов и методов их защиты от коррозии при изготовлении оборудования электрохимических процессов (электролизеры, гальванические ванны, нерастворимые аноды и катоды, подвески и т.д.).

2. Учебно-методическое и информационное обеспечение программы вступительного испытания в аспирантуру

а) основная литература:

- 1. Дамаскин Б. Б., Петрий О. А., Цирлина Г. А. Электрохимия: учебник для вузов. М.: Химия, 2006. 672 с.
- 2. Лукомский Ю.Я., Гамбург Ю.Д. Физико-химические основы электрохимии. Долгопрудный: Издательский дом «Интеллект», 2008. 424 с.
- 3. Ротинян А. Л., Тихонов К. И., Шошина И. А. Теоретическая электрохимия / под ред. А. Л. Ротиняна. Л.: Химия, 1981. 423 с.
- 4. Дасоян М.А., Пальмская И.Я., Сахарова Е.В.Технология электрохимических покрытий. Л. :Машиностроение, 1989.-390 с.
- 5. Виноградов С.С. Экологически безопасное гальваническое производство. М.: «Глобус», 1998.-302 с
- 6. Мельников П.С. Справочник по гальванопокрытиям в машиностроении- М.: Машиностроение, 1979.-384 с.
- 7. Гальванические покрытия в машиностроении. Справочник под ред. М.А. Шлугера.- М.: Машиностроение, 1985. Т.1 240 с.
- 8. Прикладная электрохимия. Учеб. для хим.-технол. спец.вузов. Под ред. Томилова А.П. 3-е изд., перераб.-М.:Химия,1984.- 520 с.
- 9. Якименко, Л. М. Справочник по производству хлора, каустической соды и основных хлоропродуктов/ Пасманик, М. И.- М.: Химия,1976.- 436, [1] с

б) дополнительная литература:

- 1. Прикладная электрохимия. Учебник для студентов хим.-технол. спец. в узов. Под ред. Кудрявцева Н.Т.-2-е изд., перераб., и доп.-М.: Химия, 1975. 551 с.
- 2. Практикум по прикладной электрохимии. Учебное пособие для вузов. Под ред. В.Н. Кудрявцева, В.Н. Варыпаева. 3-е изд., перераб.-Л.: Химия, 1990. 340 с.

- 3. Гальванотехника. Справочник / Под ред. А.М. Гинберга и др.- М.: Металлургия, 1987.- 735с.
 - в) программное обеспечение и Интернет-ресурсы
- СИСТЕМНЫЕ ПРОГРАММНЫЕ СРЕДСТВА: Microsoft Windows XP;
- ПРИКЛАДНЫЕ ПРОГРАММНЫЕ СРЕДСТВА: Microsoft Office 2007 Интернет-ресурсы:

http://www.chem.msu.su/rus/handbook/redox/welcome.html

http://www.chem.msu.su/rus/scidiv/itogi2000-2004/part014.html

http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch1_8-2.html